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‣ (1) Introduction and NWP
‣ (2) Deterministic Chaos and Lorenz-96 model
‣ (3) A toy model and Bayesian estimation
‣ (4) Kalman Filter (KF)
‣ (5) 3D Variational Method (3DVAR)
‣ (6) Ensemble Kalman Filter (PO method)
‣ (7) Serial Ens. Square Root Filter (Serial EnSRF)
‣ (8) Local Ens. Transform Kalman Filter (LETKF)
‣ (9) Innovation Statistics & Adaptive Inflation

DA Lectures A (Basic Course)



‣ To understand minimum variance estimation

‣ To understand maximum likelihood estimation

‣ To understand assumptions in these estimations

‣ To understand Bayesian estimation

Today’s Goal



Data Assimilation
- a toy model -



‣Minimum variance estimation
‣Kalman filter (KF)
‣ensemble Kalman filter (EnKF)

‣Maximum likelihood estimation
‣3D variational (3DVAR)
‣4D variational (4DVAR)
‣particle filter (PF)

A simple example: two thermometers
ଵ=20℃

(less reliable)
ଶ= 30℃

(more reliable)

Two Major Streams of DA



Minimum Variance 
Estimation

(最小分散推定)



forecast

observation

Assumption (1) : unbiased error

<・>: expectation

Assumption (2) : uncorrelated error

Minimum Variance Estimation
: truth
: random error



forecast

observation

(1) unbias

(2) uncorr.

& minimize variance of analysis (a)

definition of variance : standard deviation

: variance

Minimum Variance Estimation



weighted average by variance (σ2; =accuracy)

first guess increment

forecast

observation

(1) unbias

(2) uncorr.

Minimum Variance Estimation



Predicted state 
estimate

Predicted estimate
covariance

Optimal 
Kalman gain

Update estimate
covariance

Update state 
estimate

M( ): nonlinear model
M: Tangent Linear model
H( ): nonlinear obs. operator
H: Jacobian of H()
P: error covariance
Q: model error covariance
K: Kalman gain
R: obs. error covariance

b: background
o: observation
a: analysis

Kalman filter

analysis equation

first guess increment

)

Minimum Variance Estimation



Maximum Likelihood 
Estimation
(最尤推定)



Bayesian Estimates
Posterior

Likelihood Prior (uniform, i.e., no prior info) 

constant (since they are given)

to maximize likelihood

Maximum Likelihood Estimation
forecast

observation

(1) unbias

(2) uncorr.



Suppose x1 & x2 follow 
Gaussian PDF N(x, σ)

forecast

observation

(1) unbias

(2) uncorr.

Maximum Likelihood Estimation



analysis of maximum likelihood estimates

forecast

observation

(1) unbias

(2) uncorr.

Maximum Likelihood Estimation



minimum variance estimates

weighted average by variance (σ2; =accuracy)

maximum likelihood estimates

(1) unbias

(2) uncorr.

(3) Gaussian error PDF

Summary



Summary



The two thermometers’ example

weighted average

Extension to multi-dims problems

A simple example: two thermometers
஺=20℃

(less reliable)
஻= 30℃

(more reliable)



P: state error covariance
R: obs. error covariance
H: obs. operator

x: state
y: observation

b: background
a: analysis
o: observation

The two thermometers’ example

weighted average

Extension to multi-dims problems

Uncertainty (reliability)
of observations

Uncertainty (reliability)
of model forecasts



Prior Error Cov. Pb
(flow-dependent!)

obs error cov: R

Prediction (state)

Prediction (error covariance)

Kalman gain

Analysis (state)

Analysis (error covariance)

Kalman Filter

)



‣ Minimum variance estimation suppose
‣ unbias
‣ uncorrelated error

‣ Maximum likelihood estimation suppose
‣ unbias
‣ uncorrelated error
‣ Gaussian error PDF

‣ These solutions are identical
‣ when errors are Gaussian
‣ Namely, minimum variance estimation gives optimal 

analysis following Bayesian theory w/ Gaussian errors
‣ (細かいが大事) 最小分散推定 (KF & EnKF)は、誤差のガウ

ス分布性を仮定しない。我々が信頼するのは最尤推定で、最
小分散推定と最尤推定は、誤差がガウス分布の時に一致する。
だから、誤差のガウス分布性はKF & EnKFにも望ましいのだ。

Summary



Bayesian Estimation



Posterior
Likelihood Prior

Obs

Whole Event

P(A) P(B)

Bayesian Theorem



Interpretation by cases

Total Virus Rate Joint Inspection Result

10000

50
(virus)

x0.8 = 40 Positive (correct)
x0.2 = 10 Negative (incorrect)

9950 
(healthy)

x0.9 = 8955 Negative (correct)
x0.1 = 995 Positive (incorrect)

Bayesian Theorem: an example
An example: virus infection (e.g. COVID19) and inspection
・virus rate is 0.005 (0.5 %)
・inspection to people with virus  gives positive (+) w/ 80 %
・inspection to healthy people     gives negative (-) w/ 90 % 

Now, you have a positive result by the inspection!!!
 The percentage of having virus is only about 3.9 %.



Intuitive Interpretation

w/o virus
(9950)

w/ virus
(50)

incorrect positive (偽陽性) 10%  995 correct positive (陽性) 80%  40



Posterior
Likelihood Prior

Obs

Bayesian Theorem: an example

Prior: Prob. of virus
Obs: Prob. of positive
Likelihood: Prob. of positive given virus
Posterior: Prob. of virus given positive

An example: virus infection (e.g. COVID19) and inspection
・virus rate is 0.005 (0.5 %)
・inspection to people with virus  gives positive (+) w/ 80 %
・inspection to healthy people     gives negative (-) w/ 90 % 

Now, you have a positive result by the inspection!!!
 The percentage of having virus is only about 3.9 %.



Then,,,, so what?
Bayesian Theorem

: forward
: backward (結果原因)

陽性
(positive)

陰性
(negative)

backward causality !!!!



Bayesian Theorem (discrete)

Bayesian Estimation

uniform distribution

x



Bayesian Theorem (discrete)

Bayesian Estimation

We would like to find 
that maximizes 

uniform distribution

x



Bayesian Theorem (discrete)

Bayesian Estimation

Bayesian Theorem (general)
Likelihood Prior (uniform) 

Posterior
constant
(i.e., not a 
func. of x)

We would like to find
that maximizes 



Bayesian Estimates
Posterior

Likelihood Prior (uniform, i.e., no prior info) 

constant (since they are given)

to maximize likelihood

Maximum Likelihood Estimation
forecast

observation

(1) unbias

(2) uncorr.



Recommendations (Jpn)



Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/

Thank you for your attention!


