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‣ (1) Introduction and NWP
‣ (2) Deterministic Chaos and Lorenz-96 model
‣ (3) A toy model and Bayesian estimation
‣ (4) Kalman Filter (KF)
‣ (5) 3D Variational Method (3DVAR)
‣ (6) Ensemble Kalman Filter (PO method)
‣ (7) Serial Ens. Square Root Filter (Serial EnSRF)
‣ (8) Local Ens. Transform Kalman Filter (LETKF)
‣ (9) Innovation Statistics & Adaptive Inflation

DA Lectures A (Basic Course)



‣Lecture: Kalman Filter (KF)
‣to introduce background error covariance
‣to introduce analysis error covariance
‣to introduce Kalman gain

‣Training: Lorenz 96 
‣to develop Tangent Linear Model (TLM)
‣to implement Kalman filter into L96

Today’s Goal



Review: 
Minimum Variance Estimation

(復習: 最小分散推定)



forecast

observation

Assumption (1) : unbiased error

<・>: expectation

Assumption (2) : uncorrelated error

Minimum Variance Estimation
: truth
: random error



forecast

observation

(1) unbias

(2) uncorr.

& minimize variance of analysis (a)

definition of variance : standard deviation

: variance

Minimum Variance Estimation



weighted average by variance (σ2; =accuracy)

first guess increment

forecast

observation

(1) unbias

(2) uncorr.

Minimum Variance Estimation



Kalman Filter



Exercise
‣ to introduce Kalman gain w/ following 

Equations



Assumption & Definition
x model state ∈ ℝ

ε error

y observation ∈ ℝ

M( ) nonlinear model

M Jacobian of M ∈ ℝ×

K Kalman gain ∈ ℝ×

H( ) nonlin. obs. operator

H Jacobian of H ∈ ℝ×

P model error covariance ∈ ℝ×

R obs. error covariance ∈ ℝ×

n # of model vars.

p # of observations

m # of ensemble

tru truth

b background

a analysis

t time

o observation

<> expectation

Assumption (1) : unbiased error

Assumption (2) : uncorrelated error

since background and obs errors are independent
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Error Covariance
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ଶ

ୀଵP and R are symmetric matrices by definition.

Variance, Standard Deviation
ଶ

Covariance

Correlation

Error Covariance
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error
variance

symmetric

error
covariance



Linear Approximations
Tayler series (scalar)

Tangent Linear Model (TLM)

where

attractor
of truth

timet-1 t
ೌ

M is the linearized model
for propagating errors.

(M cannot be used to x)

attractor
of analysis



suppose that M=Mtru

Tangent Linear Model (Jacobian of M)

Forecast Error Covariance
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State Prediction

Error Prediction

Error Covariance Prediction



andNo correlation b/w

Analysis Error Covariance



‣KF minimizes analysis error variance
 to find K that minimizes trace(Pa)

Eq. (１) Eq. (2)

Kalman Gain



Substitute 

where

Analysis Error Covariance

into



Prior Error Cov. Pb
(flow-dependent!)

obs error cov: R

Prediction (state)

Prediction (error covariance)

Kalman gain

Analysis (state)

Analysis (error covariance)

Kalman Filter

)



Kalman Filter Algorithm

Prediction
(t-1  t)

AnalysisBackground

Observations

next time step



Tangent Linear Model (Numerical)

‣ repeat these steps for j=1,…,n (e.g. n=40 for L96)

jth element
of M

Require: to get M such that 

௧


௧ିଵ


jth column

jth
variable

jth column of M describes
how error of jth variable

propagates

where
jth

variable

ೌ

computable



Training Course



For j=1,…,N, Xj=Xj+N
Lorenz-96 model (Lorenz 1996)

Advection term Dissipation term Forcing term

DA Study w/ 40-variable Lorenz-96



Text Books
① Training Description 

‣https://kotsuki-lab.com/internal-pages/

pswd: ceres



Basic Task 3



Basic Task 3



Simulation Model

① nature run

③ independent
simulation

② to generate obs
w/ Gaussian noise

forecast

observation

analysis

True state

④ Data
Assimilation

⑤ validation
(e.g. RMSE)

also known as Idealized Twin Experiment

OSSE: Observing Sys. Sim. Experiment



Basic Task 4



Basic Task 4

KF (also known as Extended KF)

An additional treatment
will be needed.

Let’s think about by your self.



‣
‣ randomly chosen from nature run in spin up

‣
‣ should be large (e.g. )

Initial Condition



no inflation 10% inflation

Empirical treatment for variance underestimation due to
(1) limited ensemble size
(2) model nonlinearity
(3) model imperfection inflation factor (a tuning parameter)

Variance Inflation (KF)

௧௨ ଶ  ௧௨ ଶ



First Variable X(1) as a func. of time 



Analysis RMSE

Ave RMSE (from 10th day to 300th day)
δ=0.00   RMSE=3.970   
δ=0.03   RMSE=3.970
δ=0.05   RMSE=0.204
δ=0.10   RMSE=0.211



Sensitivity to Infl. Factor

too small inflation
causes filter divergence

too large inflation
degrades gradually



Analysis Error Covariance 



Tips



(1) Splitting M into sub Ms

time0 0.05

௧


(a) Construct M once

time0 0.05

௧


(b) Construct M separately

=

splitting M
improves slightly



(2) Alternative Way of M


ାଵ ିଶ ିଵ 

 
ାଵ ାଵ ିଵ ିଵ ିଶ ିଶ ିଵ ିଵ  (2) 

(1) 

(2) – (1) & ignore second order terms gives 


ାଵ ିଵ ିଵ ାଵ ିଶ ିଵ ିଵ ିଶ 

 
ିଵ ିଶ ାଵ ିଶ ିଵ  ିଵ ାଵ
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(2) Alternative Way of M
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For example

=M



(2) KF Comparison of M 

ସ ଶ ଷଽ

ଷ ସ ଵ

ଷଽ

Numerical Method Mathematical Approx.

Numerical method
shows better RMSE

slightly

We would be appreciated if you obtained different results  

Splitting M (i.e., = ସ ଷ ଶ ଵ )
is necessary for this method to include

impacts beyond neighboring grids.



Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/

Thank you for your attention!


