Data Assimilation - A06. Ensemble Kalman Filter-

Shunji Kotsuki

Environmental Prediction Science Laboratory Center for Environmental Remote Sensing (CEReS), Chiba University (shunji.kotsuki@chiba-u.jp)

Environmental Prediction Science .aboratory

DA Lectures A (Basic Course)

- (1) Introduction and NWP
- (2) Deterministic Chaos and Lorenz-96 model

Environmenta

- (3) A toy model and Bayesian estimation
- (4) Kalman Filter (KF)
- (5) 3D Variational Method (3DVAR)
- (6) Ensemble Kalman Filter (PO method)
- (7) Serial Ens. Square Root Filter (Serial EnSRF)
- (8) Local Ens. Transform Kalman Filter (LETKF)
- (9) Innovation Statistics & Adaptive Inflation

Today's Goal

Lecture: Ensemble Kalman Filter

- to introduce EnKF
- to understand PO method

Training: Lorenz 96

- to implement PO method
- to implement localization

Ensemble Kalman Filter (EnKF)

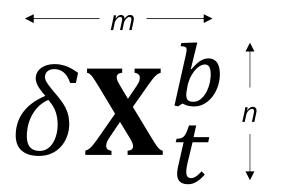
Why EnKF?

Kalman Filter

- **P** $\stackrel{n}{\rightarrow}$ Background error covariance cannot be stored on RAMfor high dimensional models such as NWP ($n \sim O(10^{12} \sim 10^{15})$
 - Ex) if $n = 10^6 \rightarrow 10^{12} \times 8$ byte = 8 TB

Ensemble Kalman Filter

$$\mathbf{P}_{t}^{b} \approx \frac{\delta \mathbf{X}_{t}^{b} (\delta \mathbf{X}_{t}^{b})^{T}}{m-1}$$

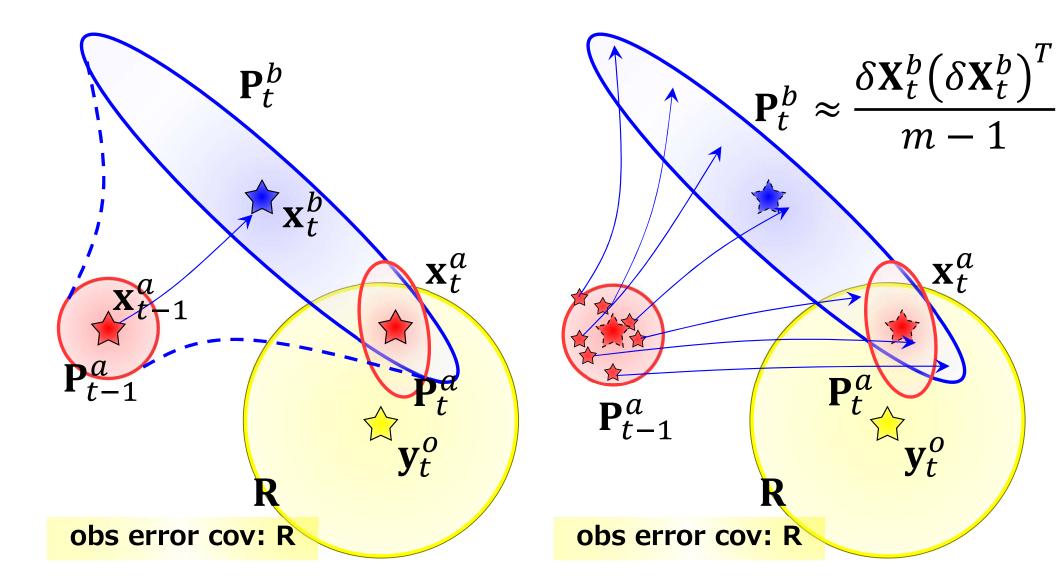


An approximation of error covariance with ensemble perturbation matrix $\delta \mathbf{X}$.

m: ensemble size

Conceptual Images

Kalman Filter Ensemble Kalman Filter



Ensemble Forecasts

Environmental Prediction Science Laboratory

for *i* = 1,...,*m*

Analysis Ensemble

$$\mathbf{X}_{t-1}^{a} = \left[\mathbf{x}_{t-1}^{a(1)}, \mathbf{x}_{t-1}^{a(2)}, \dots, \mathbf{x}_{t-1}^{a(m)} \right]$$

Ensemble Forecasts

$$\mathbf{X}_{t}^{b} = \left[\mathbf{x}_{t}^{b(1)}, \mathbf{x}_{t}^{b(2)}, \dots, \mathbf{x}_{t}^{b(m)}\right] \qquad where \ \mathbf{x}_{t}^{b(i)} = M\left(\mathbf{x}_{t-1}^{a(i)}\right)$$

Ensemble Mean

$$\bar{\mathbf{x}} \equiv \sum_{i=1}^{m} \mathbf{x}^{(i)} / m$$

Ensemble Perturbation

 δ represents ensemble perturbation

$$\delta \mathbf{X}_{t}^{b} = \left[\mathbf{x}_{t}^{b(1)} - \overline{\mathbf{x}}_{t}^{b}, \mathbf{x}_{t}^{b(2)} - \overline{\mathbf{x}}_{t}^{b}, \dots, \mathbf{x}_{t}^{b(m)} - \overline{\mathbf{x}}_{t}^{b} \right]$$
$$= \left[\delta \mathbf{x}_{t}^{b(1)}, \delta \mathbf{x}_{t}^{b(2)}, \dots, \delta \mathbf{x}_{t}^{b(m)} \right] \qquad \mathbf{Z}_{t}^{b} = \delta \mathbf{X}_{t}^{b} / \sqrt{m - 1}$$

Approximation of P^b

Environmental Prediction Science Laboratory

Error Propagation in Ensemble Forecasts

$$\delta \mathbf{x}_{t}^{b(i)} = M\left(\mathbf{x}_{t-1}^{a(i)}\right) - \overline{M(\mathbf{x}_{t-1}^{a})}$$

$$\overline{M(\mathbf{x}_{t-1}^{a})} = \frac{1}{m} \sum_{i=1}^{m} M\left(\mathbf{x}_{t-1}^{a(i)}\right)$$

$$\approx \left[M(\bar{\mathbf{x}}_{t-1}^{a}) + \mathbf{M}\delta\mathbf{x}_{t-1}^{a(i)} \right] - \left[M(\bar{\mathbf{x}}_{t-1}^{a}) + \left\langle \mathbf{M}\delta\mathbf{x}_{t-1}^{a(i)} \right\rangle \right]$$

$$= \mathbf{M} \delta \mathbf{x}_{t-1}^{a(i)}$$

$$\mathbf{P}_{t}^{b} \approx \frac{1}{m-1} \delta \mathbf{X}_{t}^{b} (\delta \mathbf{X}_{t}^{b})^{T}$$

$$= \frac{1}{m-1} \mathbf{M} \delta \mathbf{X}_{t-1}^{a} (\mathbf{M} \delta \mathbf{X}_{t-1}^{a})^{T} = \mathbf{M} \mathbf{P}_{t-1}^{a} \mathbf{M}^{T}$$

Ensemble forecasts can be used for approximating propagation of error covariance !

Ensemble Perturbation in Observation Space

$$\mathbf{Y}_{t}^{b} \equiv \mathbf{H}\mathbf{Z}_{t}^{b} \approx \left[H\left(\mathbf{X}_{t}^{b}\right) - \overline{H\left(\mathbf{X}_{t}^{b}\right)} \cdot \mathbf{1}\right] / \sqrt{m-1} \quad \text{ i.e. no } \mathbf{H} \text{ is needed}$$

Error Covariance Approximation

$$\mathbf{P}_t^b \approx \mathbf{Z}_t^b \left(\mathbf{Z}_t^b \right)^T = \delta \mathbf{X}_t^b \left(\delta \mathbf{X}_t^b \right)^T / (m-1) \qquad \mathbf{H} \mathbf{P}_t^b \mathbf{H}^T \approx \mathbf{Y}_t^b (\mathbf{Y}_t^b)^T$$

$$\begin{aligned} \mathbf{Z}_{t}^{b}(\mathbf{Y}_{t}^{b})^{T} \big[\mathbf{Y}_{t}^{b}(\mathbf{Y}_{t}^{b})^{T} + \mathbf{R} \big]^{-1} \\ &= \mathbf{Z}_{t}^{b} \big[\mathbf{I} + (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}_{t}^{b} \big]^{-1} \big[\mathbf{I} + (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}_{t}^{b} \big] \ (\mathbf{Y}_{t}^{b})^{T} \big[\mathbf{Y}_{t}^{b}(\mathbf{Y}_{t}^{b})^{T} + \mathbf{R} \big]^{-1} \\ &= \mathbf{Z}_{t}^{b} \big[\mathbf{I} + (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}_{t}^{b} \big]^{-1} (\mathbf{Y}_{t}^{b})^{T} \big[\mathbf{I} + \mathbf{R}^{-1} \mathbf{Y}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} \big] \ \big[\mathbf{Y}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} + \mathbf{R} \big]^{-1} \\ &= \mathbf{Z}_{t}^{b} \big[\mathbf{I} + (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}_{t}^{b} \big]^{-1} (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \big[\mathbf{R} + \mathbf{Y}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} \big] \ \big[\mathbf{Y}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} + \mathbf{R} \big]^{-1} \\ &= \mathbf{Z}_{t}^{b} \big[\mathbf{I} + (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}_{t}^{b} \big]^{-1} (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \big[\mathbf{R} + \mathbf{Y}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} \big] \ \big[\mathbf{Y}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} + \mathbf{R} \big]^{-1} \end{aligned}$$

KF

Prediction (state)

 $\mathbf{x}_t^b = M(\mathbf{x}_{t-1}^a)$

Prediction of Error Cov. (explicitly) $\mathbf{P}_{t}^{b} = \mathbf{M}\mathbf{P}_{t-1}^{a}\mathbf{M}^{T}(+\mathbf{Q})$

Kalman Gain $\mathbf{K}_{t} = \mathbf{P}_{t}^{b} \mathbf{H}^{T} [\mathbf{H} \mathbf{P}_{t}^{b} \mathbf{H}^{T} + \mathbf{R}]^{-1}$

Analysis (state) $\mathbf{x}_t^a = \mathbf{x}_t^b + \mathbf{K}_t(\mathbf{y}_t^o - H(\mathbf{x}_t^b))$

Analysis Error Covariance

 $\mathbf{P}_t^a = [\mathbf{I} - \mathbf{K}_t \mathbf{H}] \mathbf{P}_t^b$

Ensemble Prediction (state) $\mathbf{x}_{t}^{b(i)} = M\left(\mathbf{x}_{t-1}^{a(i)}\right) \quad \text{for } i = 1,...,m$

Prediction of Error Covariance (implicitly) $\mathbf{P}_{t}^{b} \approx \mathbf{Z}_{t}^{b} (\mathbf{Z}_{t}^{b})^{T}$

Kalman Gain

$$\mathbf{K}_{t} = \mathbf{Z}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} [\mathbf{Y}_{t}^{b} (\mathbf{Y}_{t}^{b})^{T} + \mathbf{R}]^{-1}$$

$$= \mathbf{Z}_{t}^{b} [\mathbf{I} + (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}_{t}^{b}]^{-1} (\mathbf{Y}_{t}^{b})^{T} \mathbf{R}^{-1}$$

Analysis (state) $\mathbf{x}_{t}^{a} = \mathbf{x}_{t}^{b} + \mathbf{x}_{t}^{b}$

$$= \mathbf{x}_t^b + \mathbf{K}_t (\mathbf{y}_t^o - H(\mathbf{x}_t^b))$$

Analysis Error Covariance

- (1) Stochastic: PO method
- (2) Deterministic: Square Root Filter (SRF) (e.g., serial EnSRF, EAKF, LETKF)

PO Method (stochastic)

Environmental Prediction Science aboratory

nalysis of Ensemble
$$\boldsymbol{\varepsilon}_{t}^{o} \sim N(0, \mathbf{R})$$
randomly drawn perturbation $\mathbf{x}_{t}^{a(i)} = \mathbf{x}_{t}^{b(i)} + \mathbf{K}_{t}(\mathbf{y}_{t}^{o} + \boldsymbol{\varepsilon}_{t}^{o} - H(\mathbf{x}_{t}^{b(i)}))$ randomly drawn perturbation

Why do we need perturbation?

if w/o perturbation (to take ave. from both sides) $\delta \mathbf{x}_{t}^{a(i)} \approx \delta \mathbf{x}_{t}^{b(i)} - \mathbf{K}_{t} \mathbf{H} \delta \mathbf{x}_{t}^{b(i)}$

$$\Leftrightarrow \delta \mathbf{X}_t^a \approx (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \delta \mathbf{X}_t^b$$

$$\mathbf{P}_t^a \approx \delta \mathbf{X}_t^a (\delta \mathbf{X}_t^a)^T / (m-1)$$
$$= (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \mathbf{P}_t^b (\mathbf{I} - \mathbf{K}_t \mathbf{H})^T$$

 $\mathbf{K}_t \mathbf{R} \mathbf{K}_t^T$ $= \mathbf{K}_t \langle \mathbf{\epsilon}_t^o (\mathbf{\epsilon}_t^o)^T \rangle \mathbf{K}_t^T$

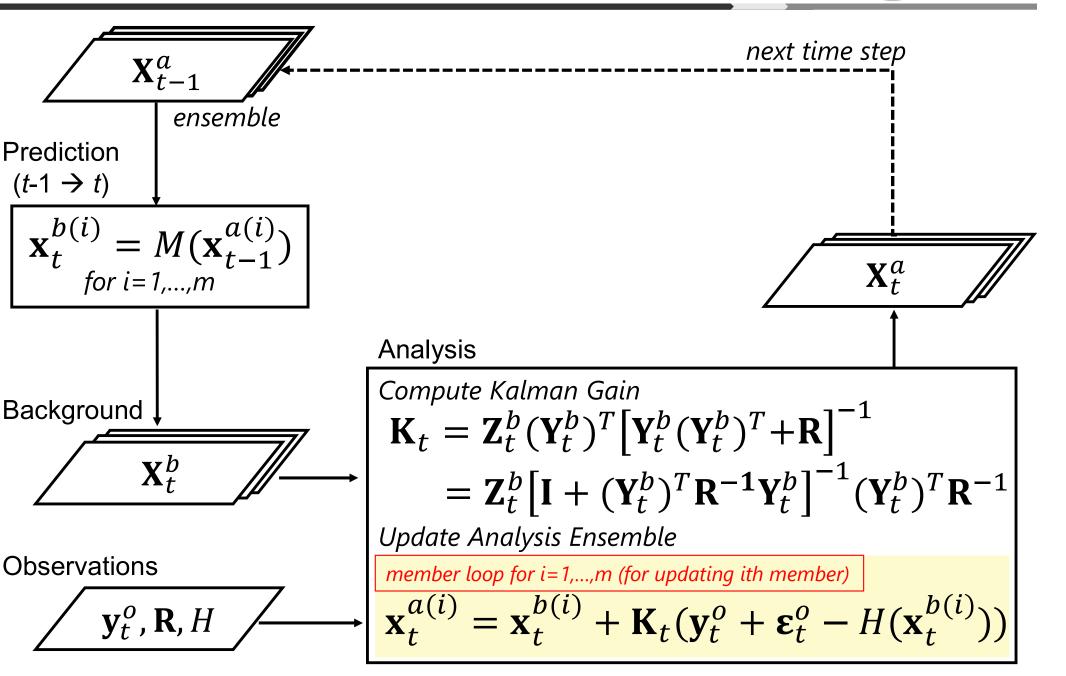
Analysis error covariance is underestimated if without perturbation!

Burgers et al. (1998)

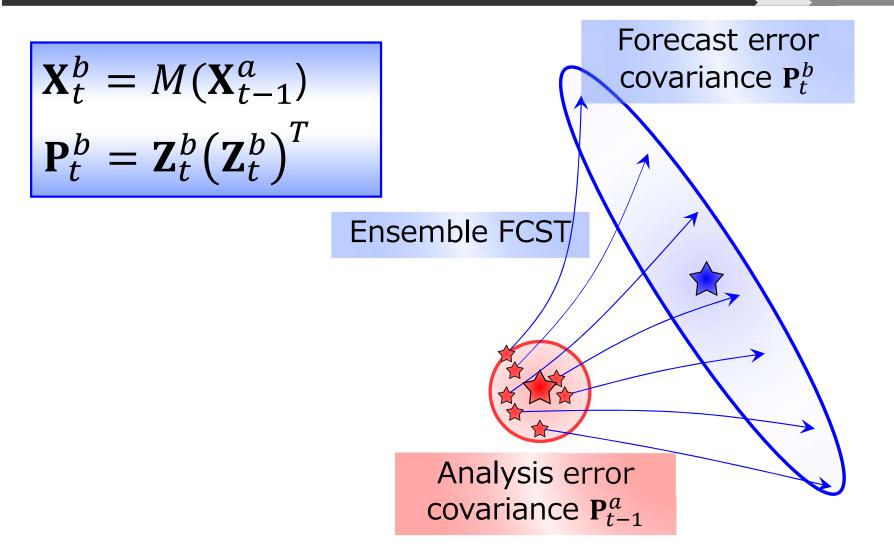
Analysis error covariance should be (cf. 4th lecture)

 $\mathbf{P}_{t}^{a} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}_{t}^{b}(\mathbf{I} - \mathbf{K}\mathbf{H})^{T} + \mathbf{K}\mathbf{R}\mathbf{K}^{T}$

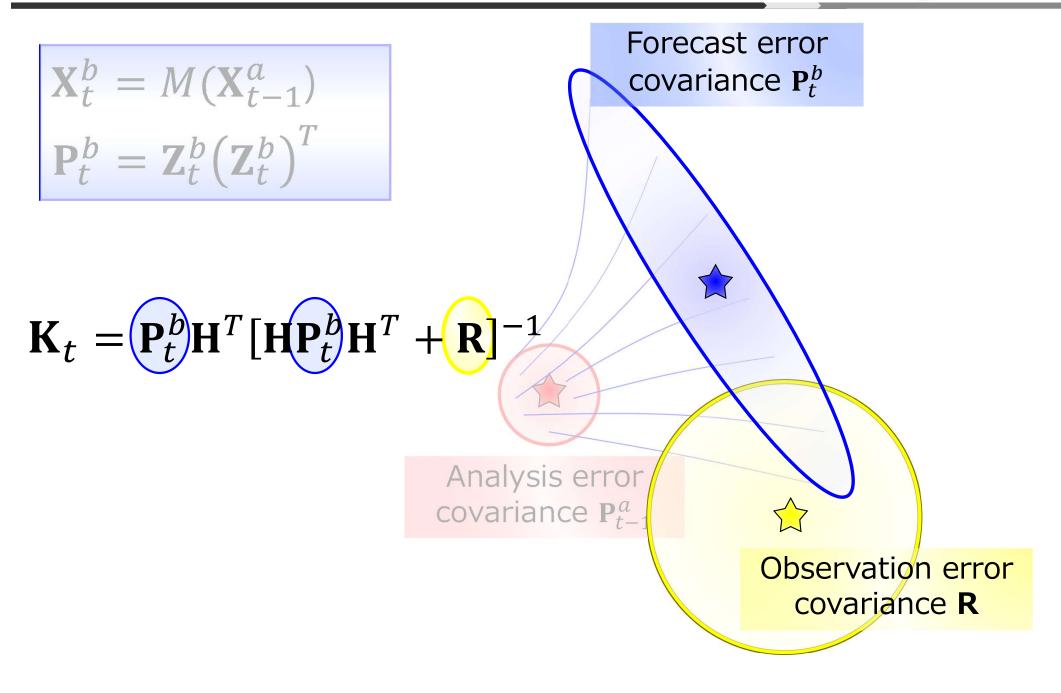
EnKF (PO) Algorithm

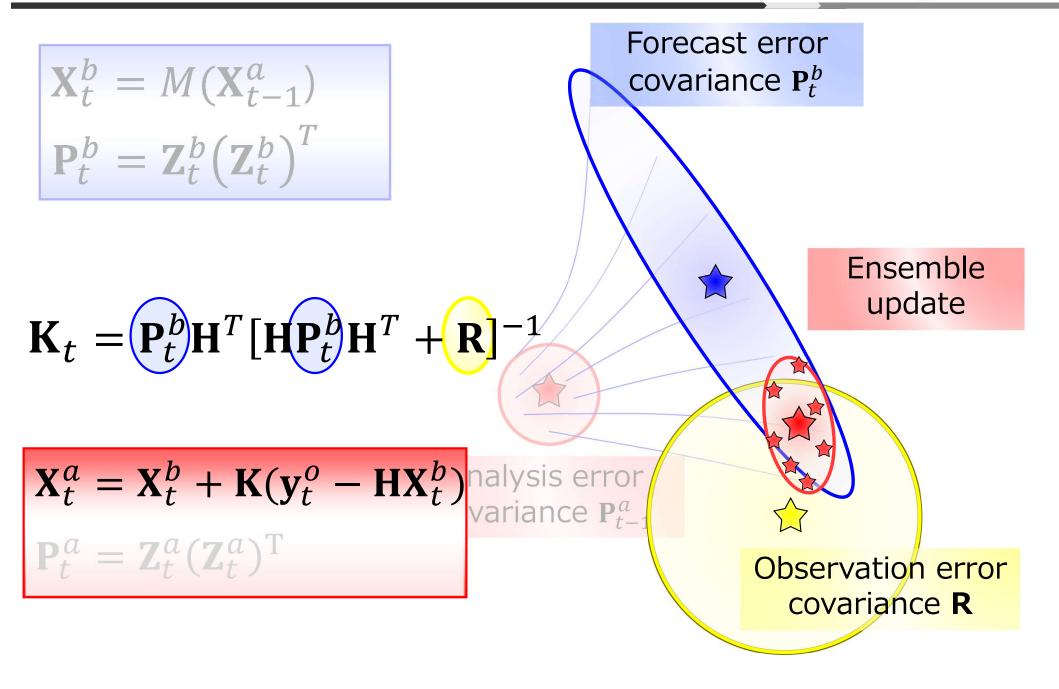


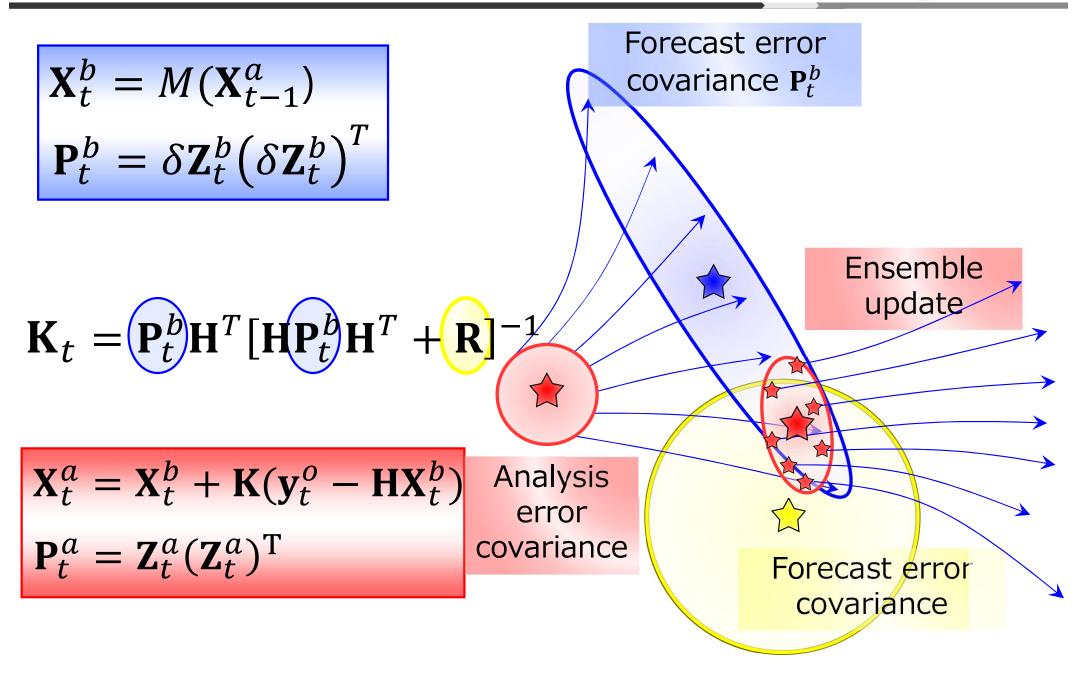
Environmental Prediction Science Laboratory



 $\mathbf{Z}_t^b = \delta \mathbf{X}_t^b / \sqrt{m-1}$







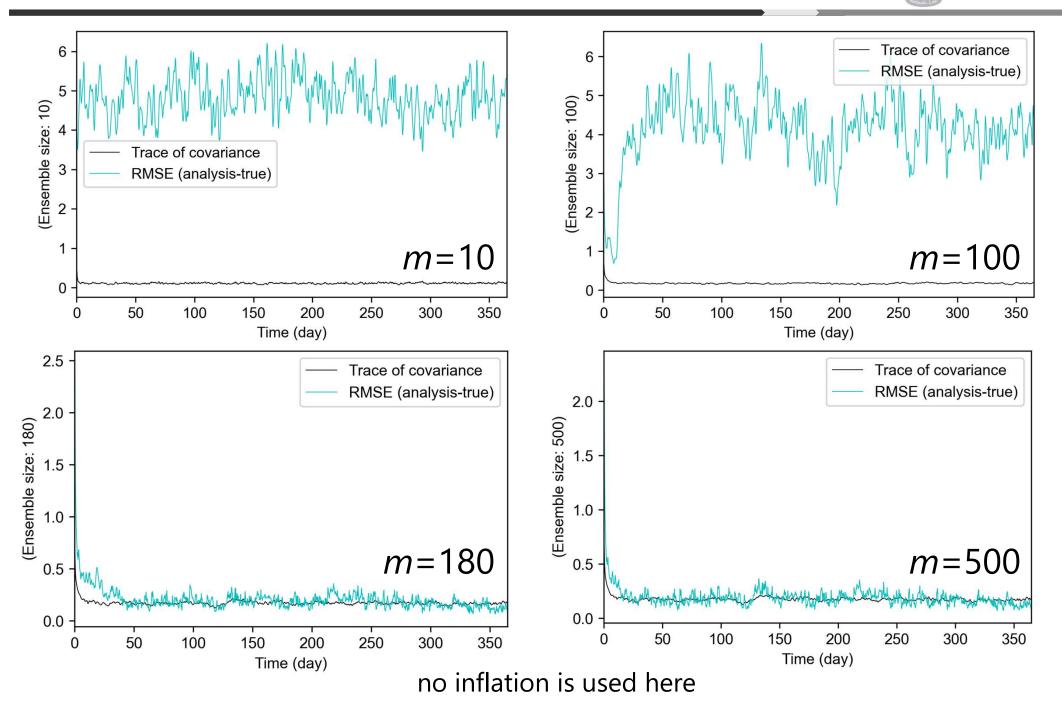
Basic Task 5

Basic Task 5

- EnKF を実装し、KF と比較する。Whitaker and Hamill (2002)による Serial EnSRF, Bishop et al. (2001)による ETKF、Hunt et al. (2007)による LETKF、PO 法などの解 法がある。2つ以上実装すること。
 - ヒント)気象分野の EnKF では、上述の手法が良く用いられている。カナダでは PO 法、米国気象局では Serial EnSRF、ドイツ・日本では LETKF など。小槻研で研究を進 める場合、LETKF を用いた研究をしていくことが想定されるため、LETKF の実装に は取り組んで欲しい。
- Implement EnKF and compare with KF. There are solutions such as Serial EnSRF by Whitaker and Hamill (2002), ETKF by Bishop et al. (2001), LETKF and PO method by Hunt et al. (2007). Implement at least two or more.

Hint) The above methods are often used in EnKF in the meteorological field. PO method in Canada, Serial EnSRF in the US Meteorological Bureau, LETKF in Germany and Japan, etc. When proceeding with research at Kotsuki Lab, it is expected that research using LETKF will be carried out, so I would like you to work on the implementation of LETKF at least.

EnKF (PO) w/o Localization



Environmental

Prediction Science Laboratory

Treatments

Environmental Prediction Science Laboratory

(1) Perturbed Observations

$$\mathbf{x}_{t}^{a(i)} = \mathbf{x}_{t}^{b(i)} + \mathbf{K}_{t}(\mathbf{y}_{t}^{o} + \boldsymbol{\varepsilon}_{t}^{o(i)} - H(\mathbf{x}_{t}^{b(i)})) \qquad \text{for } i=1,...,m$$

this error should be modified so that $\sum_{i=1}^{m} \boldsymbol{\varepsilon}_{t}^{o(i)} = 0$
 $\Leftrightarrow \bar{\mathbf{x}}_{t}^{a} = \bar{\mathbf{x}}_{t}^{b} + \mathbf{K}_{t}(\mathbf{y}_{t}^{o} - \overline{H(\mathbf{x}_{t}^{b})})$

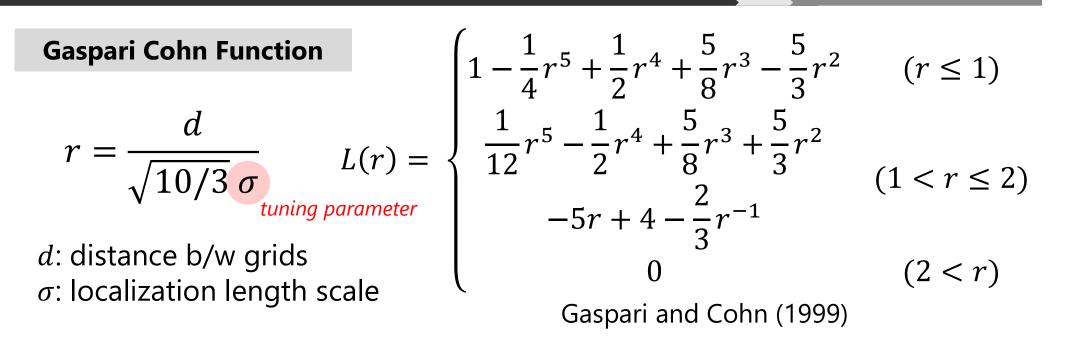
$$\mathbf{P}_{inf}^{b} = (1 + \delta)^{2} \cdot \mathbf{P}^{b}$$
$$\iff \delta \mathbf{X}_{inf}^{b} = (1 + \delta) \cdot \delta \mathbf{X}^{b}$$

(3) Localization

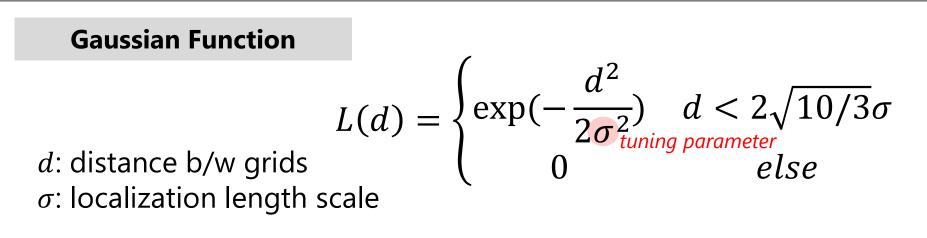
(2)

Localization Function

Environmental Prediction Science Laboratory



usually used in PO and serial EnSRF

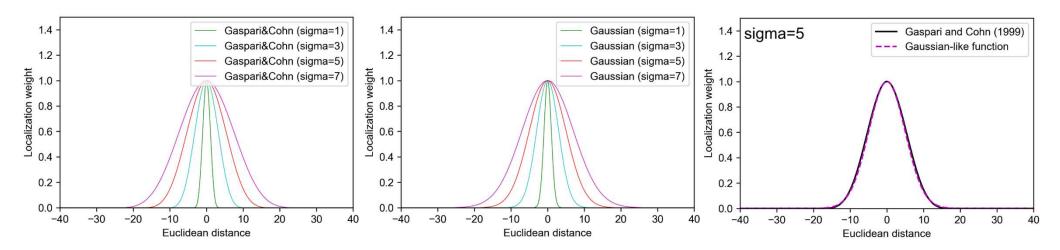


usually used in LETKF

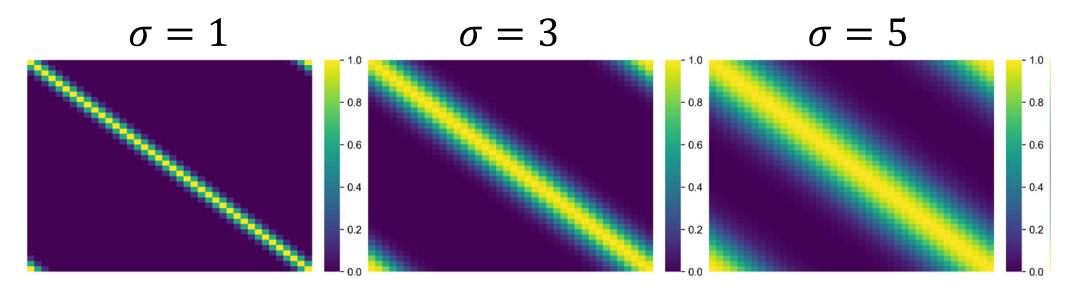
Localization Function

Environmental Prediction Science Laboratory

Localization Function



Localization Matrix (Gaussian Function)



Localization in PO method

Environmental Prediction Science Laboratory

Kalman Gain

$$\mathbf{K}_t = \mathbf{Z}_t^b (\mathbf{Y}_t^b)^T \left[\mathbf{Y}_t^b (\mathbf{Y}_t^b)^T + \mathbf{R} \right]^{-1}$$

$$\mathbf{P}_t^b \mathbf{H}^T = \mathbf{L} \circ \mathbf{Z}_t^b (\mathbf{Y}_t^b)^T$$

- $\mathbf{L} \in \mathbb{R}^{n \times p}$: Localization Matrix
 - Shur product

 also known as Hadamard product
 or, element-wise product

未解決メモ: Yb YbT は 局所化掛けなくて良いのか? covariance localization (EnKF)

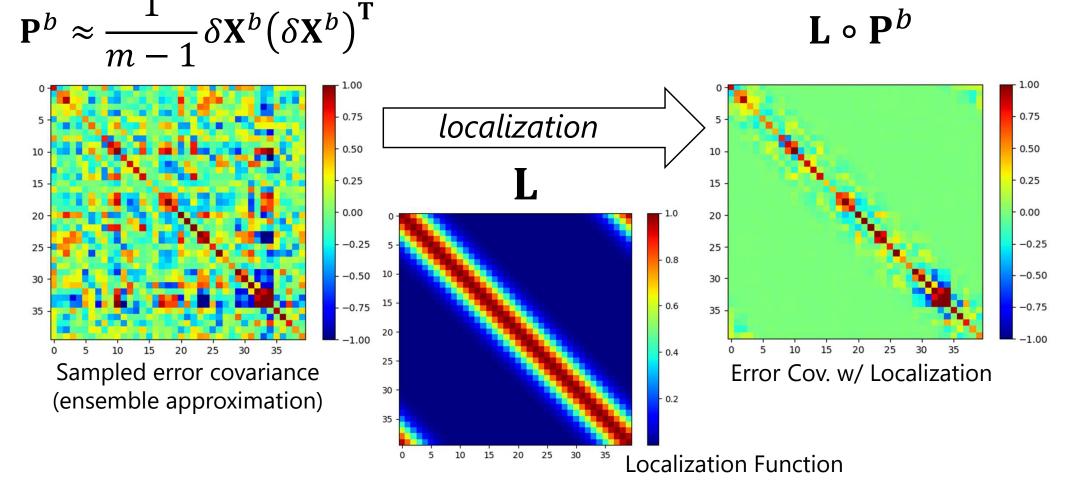
Environmental Prediction Science aboratory

(1) reducing sampling noise (2) increasing the rank

 $\mathbf{P}^b \rightarrow \mathbf{L} \circ \mathbf{P}^b$

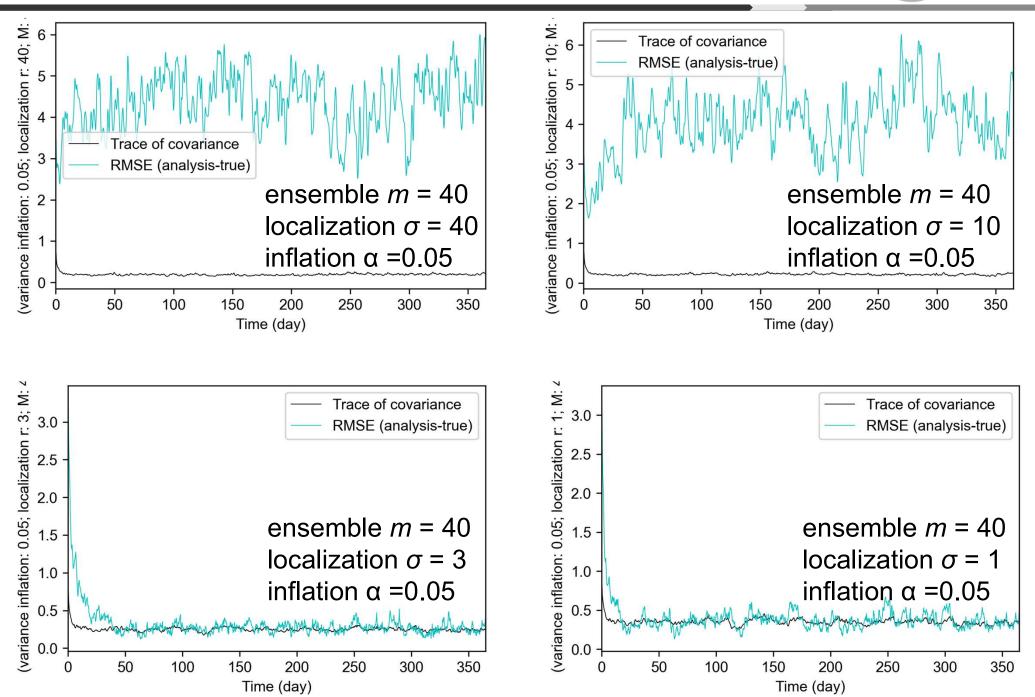
• : Schur product

 $\mathbf{L} \circ \mathbf{P}^b$



EnKF (PO) w/ Localization

Environmental Prediction Science Laboratory



Thank you for your attention! Presented by Shunji Kotsuki (shunji.kotsuki@chiba-u.jp)

Further information is available at https://kotsuki-lab.com/

Environmental Prediction Science aboratory