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‣ (1) Introduction and NWP
‣ (2) Deterministic Chaos and Lorenz-96 model
‣ (3) A toy model and Bayesian estimation
‣ (4) Kalman Filter (KF)
‣ (5) 3D Variational Method (3DVAR)
‣ (6) Ensemble Kalman Filter (PO method)
‣ (7) Serial Ens. Square Root Filter (Serial EnSRF)
‣ (8) Local Ens. Transform Kalman Filter (LETKF)
‣ (9) Innovation Statistics & Adaptive Inflation

DA Lectures A (Basic Course)



‣Lecture: LETKF
‣to introduce ETKF
‣to introduce LETKF

‣Training: Lorenz 96 
‣to implement LETKF into L96

Today’s Goal



Ensemble Kalman Filter
(EnKF)



KF
Prediction (state)

Prediction of Error Cov. (explicitly)

Kalman Gain

Analysis (state)

Analysis Error Covariance

)
Ensemble Prediction (state)

for i = 1,…,m

Prediction of Error Covariance (implicitly)

Kalman Gain

EnKF

Analysis (state)

Analysis Error Covariance
(1) Stochastic: PO method
(2) Deterministic: Square Root Filter (SRF)

(e.g., serial EnSRF, EAKF, LETKF)



Square Root Filter (SRF)
SRF assumes the following update w/o adding perturbation in obs.

௠×௠ : Ensemble Ptb. Transform Matrix

 
and compute W that satisfies

 

However, SRF cannot determine deterministically.
For example, for that satisfies , 

a new matrix can be also a ptb. transform matrix since 

  =  

Question: how can we determine W?



Ensemble Transform
Kalman Filter



Data Assimilation

model space
observation space

projection

standard Kalman filter

Kalman Gain

Analysis Error Covariance

Analysis Update Equation



Ensemble Transform KF

model space

ensemble space

observation space

ensemble 
transformation projection

projection

standard Kalman filter

ETKF

Bishop et al. (2001; MWR)
Figure adopted from Kotsuki et al. (2020; QJRMS)



ETKF (Ens. Trans. KF)
ETKF considers (m-1)-dimensional subspace (ensemble space) spanned by Zb

① Background Error Cov. 

② Analysis Error Cov. 

③ Analysis Increment 

④ Analysis Equation



Eigenvalue Decomposition

=

Analysis Equations

mean

perturbation

Eigenvalue Decomposition
௠×௠: eigenvectors 
௠×௠: eigenvalues (diagonal)

௕ ் ିଵ ௕ is always m
because of adding I ௠×௠.

Analysis Update Equation
1≡[1,1,…,1] : row vector with ones.

௠×௠ : transform matrix of the ETKF

௠ : weight vector
௠×௠ : weight matrix

where

Hunt et al. (2007)’s approach requiring O(m3)



ETKF  LETKF (Local ETKF)

LETKF (i) LETKF ( j)

localization

: observations

: analysis grid points
of the LETKF

‣ The LETKF computes the transform matrix T at 
every model grid point by assimilating surrounding 
obs within a prescribed localization cutoff radius.

‣ And the LETKF updates analysis ensemble at every 
model grid point 

Adopted from 
Kotsuki et al. (2020; QJRMS)



R-localization

R-localization (to reduce impacts of obs far from anl. grid point)

Gaussian Function

tuning parameter

Localized obs error variance
of ith observation

Localized R is used for

=Eigenvalue decomposition

mean update equation

: distance b/w grids
: localization length scale



Symmetric Square Root
SRF including ETKF assumes the following update equation.

We cannot determine W uniquely

Symmetric Square Root

where

The symmetric square root matric ௔ ଵ/ଶ

can be determined deterministically!

‣ Since the LETKF generates analysis ens. perturbations as 
at all model grid points independently, the 

smooth transition of in space is essential not to 
produce imbalanced analysis ensemble. The symmetric 
of ensures a spatially smooth transition of 

from one grid point to the next (Hunt et al. 2007). 
‣ The symmetric square root matrix also ensures the 

analysis ensemble perturbations are consistent with the 
background ensemble perturbations because it 
minimizes the mean square distance b/w and I.

Kotsuki and Bishop (2021)

Importance



Characteristics
Eigenvalue decomposition

sum of ptb. = 0

௔ ିଵ ௕ ் ିଵ ௕ Posterior perturbation ௔ is given by
linear combination of prior members.



LETKF

Prediction
(t-1  t)

Background

Observations

next time step

ensemble

for i=1,…,m

Analysis

(2) Local Analysis
grid loop for i=1,…,n (for updating ith grid points)

(2.1) Eigenvalue Decomposition

(1) Preparation Step

=

(2.2) Update Ensemble

௔
௧
௕ ்

௟௢௖
ିଵ

௧
௢ି௕ ௔ ଵ/ଶ

(3) Collect analysis ens of all model grid points
to obtain ௧

௔ for subsequent forecasts



LETKF ・: model grid points
×: observing station

LETKF can be parallelized for model grid points



Basic Task 5



Basic Task 5



Techniques for LETKF

Localization

Inflation

Gaussian Function

tuning parameter

: distance b/w grids
: localization length scale

=where EVD is solved by

localized obs error variance of ith observation



Analysis RMSE (Serial EnSRF vs. LETKF)
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X axis: localization length scale (σ)

Kotsuki (m=8, p=20)

Miyoshi (2006)
Serial EnSRF

Miyoshi (2006)
LETKFLETKF

Serial EnsRF



Case 1 

Case 1 

Case 2 

Case 2 

Case 1: Num. Obs. = X

Case 2: Num. Obs. = X

Sensitivity to Obs. Network

(analysis RMSE)

homogeneous

dense



Kotsuki et al. (2017)

Kotsuki, S., Greybush, S., and Miyoshi, T. (2017): 
Can we optimize the assimilation order in the serial ensemble Kalman filter? 
A study with the Lorenz-96 model. Mon. Wea. Rev., 145, 4977-4995. 

Analysis RMSE with 40 observations w/ L96 (w/ best loc. scale)

LETKF Serial EnSRF



Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/

Thank you for your attention!


