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DA Lectures A (Basic Course)
‣ (1) Introduction and NWP
‣ (2) Deterministic Chaos and Lorenz-96 model
‣ (3) A toy model and Bayesian estimation
‣ (4) Kalman Filter (KF)
‣ (5) 3D Variational Method (3DVAR)
‣ (6) Ensemble Kalman Filter (PO method)
‣ (7) Serial Ens. Square Root Filter (Serial EnSRF)
‣ (8) Local Ens. Transform Kalman Filter (LETKF)
‣ (9) Innovation Statistics
‣ (10) Adaptive Inflations
‣ (11) 4D Variational Method (4DVAR)



‣Lecture: Kalman Filter (KF)
‣to introduce background error covariance
‣to introduce analysis error covariance
‣to introduce Kalman gain

‣Training: Lorenz 96 
‣to develop Tangent Linear Model (TLM)
‣to implement Kalman filter into L96

Today’s Goal



Review: 
Minimum Variance Estimation

(復習: 最小分散推定)



forecast

observation

Assumption (1) : unbiased error

<・>: expectation

Assumption (2) : uncorrelated error

Minimum Variance Estimation
: truth
: random error



forecast

observation

(1) unbias

(2) uncorr.

& minimize variance of analysis (a)

definition of variance : standard deviation

: variance

Minimum Variance Estimation



weighted average by variance (σ2; =accuracy)

first guess increment

forecast

observation

(1) unbias

(2) uncorr.

Minimum Variance Estimation



Kalman Filter



Exercise
‣ to introduce Kalman gain w/ following 

Equations



Assumption & Definition
∈ ℝmodel statex

errorε

∈ ℝobservationy

nonlinear modelM( )

∈ ℝ ×Jacobian of MM

∈ ℝ ×Kalman gainK

nonlin. obs. operatorH( )

∈ ℝ ×Jacobian of HH

∈ ℝ ×model error covarianceP

∈ ℝ ×obs. error covarianceR

# of model vars.n

# of observationsp

# of ensemblem

truthtru

backgroundb

analysisa

timet

observationo

expectation<>

Assumption (1) : unbiased error

Assumption (2) : uncorrelated error

since background and obs errors are independent



Error Covariance

P and R are symmetric matrices by definition.

Variance, Standard Deviation

Covariance

Correlation

Error Covariance

error
variance

symmetric

error
covariance



Linear Approximations
Tayler expansion (scalar)

Tangent Linear Model (TLM)

where

attractor
of truth

timet-1 t

M is the linearized model
for propagating errors.

(M cannot be used to x)

attractor
of analysis



suppose that M=Mtru

Tangent Linear Model (Jacobian of M)

Forecast Error Covariance
State Prediction

Error Prediction

Error Covariance Prediction



andNo correlation b/w

Analysis Error Covariance



‣KF minimizes analysis error variance
 to find K that minimizes trace(Pa)

Eq. (１) Eq. (2)

Kalman Gain



Substitute 

where

Analysis Error Covariance

into



Prior Error Cov. Pb
(flow-dependent!)

obs error cov: R

Prediction (state)

Prediction (error covariance)

Kalman gain

Analysis (state)

Analysis (error covariance)

Kalman Filter

)
nonlinear model

linearized model



Kalman Filter Algorithm

Prediction
(t-1  t)

AnalysisBackground

Observations

next time step



Sequential Kalman Filter

time

true state (unknow)

t

: forecast : observation : error cov. (accuracy): analysis (DA)
t+1

)
Prediction Assimilation



Tangent Linear Model (Numerical)

‣ repeat these steps for j=1,…,n (e.g. n=40 for L96)

jth element
of M

Require: to get M such that 
jth column

jth
variable

jth column of M describes
how error of jth variable

propagates

where
jth

variable

computable



Training Course



For j=1,…,N, Xj=Xj+N
Lorenz-96 model (Lorenz 1996)

Advection term Dissipation term Forcing term

DA Study w/ 40-variable Lorenz-96



Text Books
① Training Description 

‣https://kotsuki-lab.com/internal-pages/

pswd: ceres



Basic Task 3



Basic Task 3

This means the experiments assume R to be I (i.e., identity matrix)



Simulation Model

① nature run

③ independent
simulation

② to generate obs
w/ Gaussian noise

forecast

observation

analysis

True state

④ Data
Assimilation

⑤ validation
(e.g. RMSE)

also known as Idealized Twin Experiment

OSSE: Observing Sys. Sim. Experiment



Basic Task 4



Basic Task 4

KF (also known as Extended KF)

An additional treatment
will be needed.

Let’s think about by your self.



‣
‣ randomly chosen from nature run in spin up

‣
‣ should be large (e.g. )

Initial Condition



no inflation 10% inflation

Empirical treatment for variance underestimation due to
(1) limited ensemble size
(2) model nonlinearity
(3) model imperfection inflation factor (a tuning parameter)

Variance Inflation (KF)



First Variable X(1) as a func. of time 



Analysis RMSE

Ave RMSE (from 10th day to 300th day)
δ=0.00   RMSE=3.970   
δ=0.03   RMSE=3.970
δ=0.05   RMSE=0.204
δ=0.10   RMSE=0.211



Sensitivity to Infl. Factor

too small inflation
causes filter divergence

too large inflation
degrades gradually



FCST Error Covariance 



Tips



(1) Splitting M into sub Ms

time0 0.05

(a) Construct M once

time0 0.05

(b) Construct M separately

=

splitting M
improves slightly



(2) Alternative Way of M

(2) 

(1) 

(2) – (1) & ignore second order terms gives =



(2) Alternative Way of M

For example

=M



(2) KF Comparison of M 
Numerical Method Mathematical Approx.

Numerical method
shows better RMSE

slightly

We would be appreciated if you obtained different results  

Splitting M (i.e., = )
is necessary for this method to include

impacts beyond neighboring grids.



Mao追試

・なんでインフレーションが要らない?
非対角成分が理由?



Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/

Thank you for your attention!


