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DA Lectures A (Basic Course)
‣ (1) Introduction and NWP
‣ (2) Deterministic Chaos and Lorenz-96 model
‣ (3) A toy model and Bayesian estimation
‣ (4) Kalman Filter (KF)
‣ (5) 3D Variational Method (3DVAR)
‣ (6) Ensemble Kalman Filter (PO method)
‣ (7) Serial Ens. Square Root Filter (Serial EnSRF)
‣ (8) Local Ens. Transform Kalman Filter (LETKF)
‣ (9) Innovation Statistics
‣ (10) Adaptive Inflations
‣ (11) 4D Variational Method (4DVAR)



‣ Lecture
‣what is the 3D-Var?
‣what is the cost function?
‣maximum likelihood vs. minimum variance
‣how can we get a reasonable B?

‣ Training Course
‣to implement 3DVAR
‣hints to develop KF
‣some tips for KF

Today’s goals



Review:
Max. Likelihood Estimation

(復習: 最尤推定)



Bayesian Estimates
Posterior

Likelihood Prior (uniform, i.e., no prior info) 

constant (since they are given)

to maximize likelihood

Maximum Likelihood Estimation
forecast

observation

(1) unbias

(2) uncorr.



Suppose x1 & x2 follow 
Gaussian PDF N(x, σ)

forecast

observation

(1) unbias

(2) uncorr.

Maximum Likelihood Estimation



analysis of maximum likelihood estimates

forecast

observation

(1) unbias

(2) uncorr.

Maximum Likelihood Estimation





Assumption & Definition
∈ ℝmodel statex

errorε

∈ ℝobservationy

nonlinear modelM( )

∈ ℝ ×Jacobian of MM

∈ ℝ ×Kalman gainK

nonlin. obs. operatorH( )

∈ ℝ ×Jacobian of HH

∈ ℝ ×model error covarianceP

∈ ℝ ×obs. error covarianceR

# of model vars.n

# of observationsp

# of ensemblem

truthtru

backgroundb

analysisa

timet

observationo

expectation<>

Assumption (1) : unbiased error

Assumption (2) : uncorrelated error

since background and obs errors are independent



Multidimensional Extension

Suppose x1 & x2 follow 
Gaussian PDF N(x, σ)

Scalar

Multi-dims.
Suppose follow N(x, B)

Suppose follow N(H(x), R)



Joint Probability

= +



Variational DA
= +

= +

= +

+&

=
d: innovation, departuregradient

necessary 
condition

B, Pb: background error covariance
A, Pa: analysis error covariance



Variational DA (cont’d)
Proof of Kalman Gain

Proof of Analysis Error Cov.



Important Equations
Kalman Gain

Analysis Error Covariance

Analysis Update Equation



3DVAR

Prediction
(t-1  t)

Background

Observations

next time step

Analysis

Optimal Interpolation

OI only assimilates retrieved vars
(can consider only H)



Training Course



For j=1,…,N, Xj=Xj+N
Lorenz-96 model (Lorenz 1996)

Advection term Dissipation term Forcing term

DA Study w/ 40-variable Lorenz-96



Text Books
① Training Description 

‣https://kotsuki-lab.com/internal-pages/

pswd: ceres



Basic Task 5



Basic Task 5



3DVAR (Full Observations)

minimized (0.3962) when
Ave Bii = 0.225  
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when B is diagonal matrix.

Time-mean RMSE

(analysis RMSE)



Sensitivity to Obs. Network
Case 1: Num. Obs. = X

Case 2: Num. Obs. = X

homogeneous

dense

Full Observations

n=40

p=40

20 Obs (Case1)
１

20 Obs (Case2)

p=20

p=20

n=40

n=40

…

…

…

…

…
…



Case 1 

Case 1 

Case 2 

Case 2 

Case 1: Num. Obs. = X

Case 2: Num. Obs. = X

Sensitivity to Obs. Network

(analysis RMSE)

homogeneous

dense



Hints to Develop
KF & 3DVAR



(1) Steps for KF & 3DVAR
3DVARKF

)State Prediction

B (static)Background Error Cov.

Kalman Gain

State Analysis 

Analysis Error Cov.

Starting with 3DVAR 
is a good strategy,

followed by KF

3DVAR



Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/

Thank you for your attention!


