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DA Lectures A (Basic Course)
‣ (1) Introduction and NWP
‣ (2) Deterministic Chaos and Lorenz-96 model
‣ (3) A toy model and Bayesian estimation
‣ (4) Kalman Filter (KF)
‣ (5) 3D Variational Method (3DVAR)
‣ (6) Ensemble Kalman Filter (PO method)
‣ (7) Serial Ens. Square Root Filter (Serial EnSRF)
‣ (8) Local Ens. Transform Kalman Filter (LETKF)
‣ (9) Innovation Statistics
‣ (10) Adaptive Inflations
‣ (11) 4D Variational Method (4DVAR)



‣Lecture: Ensemble Kalman Filter
‣to introduce EnKF
‣to understand PO method

‣Training: Lorenz 96 
‣to implement PO method
‣to implement localization

Today’s Goal



Ensemble Kalman Filter
(EnKF)



Why EnKF?

n

n

Background error covariance cannot be 
stored on RAMfor high dimensional models 
such as NWP (n~O(1012~1015)

Ex) if n=106 1012 x 8 byte = 8 TB

Kalman Filter

Ensemble Kalman Filter
m

n

An approximation of error covariance
with ensemble perturbation matrix m: ensemble size



Conceptual Images

obs error cov: R obs error cov: R

Kalman Filter Ensemble Kalman Filter



Ensemble Forecasts
Analysis Ensemble

=

Ensemble Forecasts

=

Ensemble Mean

Ensemble Perturbation

=

=

for i = 1,…,m

δ represents ensemble perturbation

=



Approximation of Pb
Error Propagation in Ensemble Forecasts

Ensemble forecasts can be used for approximating
propagation of error covariance !



‣ Pls. study discussions on “unbiased variance”

why m-1?



Ensemble Kalman Filter

Error Covariance Approximation

Kalman Gain

Ensemble Perturbation in Observation Space

m x mp x p
※ usually R is diagonal (i.e., no obs error corr.)
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We can choose inverse computation
depending on p and m.

i.e. no H is needed



KF
Prediction (state)

Prediction of Error Cov. (explicitly)

Kalman Gain

Analysis (state)

Analysis Error Covariance

)
Ensemble Prediction (state)

for i = 1,…,m

Prediction of Error Covariance (implicitly)

Kalman Gain

EnKF

Analysis (state)

Analysis Error Covariance
(1) Stochastic: PO method
(2) Deterministic: Square Root Filter (SRF)

(e.g., serial EnSRF, EAKF, LETKF)



PO Method (stochastic)
Analysis of Ensemble

randomly drawn perturbation
 perturbed observation

Why do we need perturbation?

Analysis error covariance
should be (cf. 4th lecture)

if w/o perturbation (to take ave. from both sides)

Analysis error covariance
is underestimated 

if without perturbation! 
Burgers et al. (1998)



EnKF (PO) Algorithm

Prediction
(t-1  t)

Analysis

Background

Observations

next time step

ensemble

for i=1,…,m

Compute Kalman Gain

Update Analysis Ensemble
member loop for i=1,…,m (for updating ith member)
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Ensemble FCST

Analysis error 
covariance ௧ିଵ



Forecast error 
covariance ௧



Ensemble Kalman Filter

=
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Analysis error 
covariance ௧ିଵ



Forecast error 
covariance ௧



Observation error 
covariance R

Ensemble Kalman Filter
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Analysis error 
covariance ௧ିଵ



Ensemble 
update

Forecast error 
covariance ௧



Observation error 
covariance R

Ensemble Kalman Filter



Analysis 
error 

covariance Forecast error 
covariance

Ensemble 
update

Forecast error 
covariance ௧



Ensemble Kalman Filter

)



Basic Task 5



Basic Task 5



EnKF (PO) w/o Localization

m=10 m=100

m=500m=180

no inflation is used here



Treatments

(2) Variance Inflation

for i=1,…,m

(1) Perturbed Observations

this error should be modified so that

(3) Localization

Random number should be different
for each member

Kekem and Leendert (2018)

- to limit impacts of obs far from analysis grid points
for erroneous error “co”variance due to sampling errors

- several localizations have been proposed
- K localization (in PO or serial EnKF
- R localization (in LETKF)
- B localization (usually complex for high-dim modes)

Assimilating surrounding local obs. 
to update centered grid x1 (★)

★

Specifically, generate random numbers 𝛆′௧
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and compute their average 𝛆ത௧
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Then, perturb with  𝛆௧
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Empirical treatment for
(1) reducing sampling noise
(2) increasing the rank

localization

◦: Schur product

covariance localization (EnKF)

Sampled error covariance
(ensemble approximation)

Error Cov. w/ Localization

Localization Function



Localization Function
ହ ସ ଷ ଶ

ହ ସ ଷ ଶ

ିଵ

: distance b/w grids
: localization length scale

Gaspari Cohn Function

Gaussian Function

Gaspari and Cohn (1999)

usually used in PO and serial EnSRF

usually used in LETKF

tuning parameter

tuning parameter
: distance b/w grids
: localization length scale



Localization Function
Localization Function

Localization Matrix (Gaussian Function)



Localization in PO method

: Localization Matrix
:       Shur product 

also known as Hadamard product
or, element-wise product

Kalman Gain



Impacts of Localization (PO)
Inflation : m=8, σ=1, δ=10%

Localization should be applied for all “co”variance



EnKF (PO) w/ Localization

ensemble m = 40
localization σ = 40
inflation α =0.05

ensemble m = 40
localization σ = 10
inflation α =0.05

ensemble m = 40
localization σ = 3
inflation α =0.05

ensemble m = 40
localization σ = 1
inflation α =0.05



Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/

Thank you for your attention!


