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DA Lectures A (Basic Course)
‣ (1) Introduction and NWP
‣ (2) Deterministic Chaos and Lorenz-96 model
‣ (3) A toy model and Bayesian estimation
‣ (4) Kalman Filter (KF)
‣ (5) 3D Variational Method (3DVAR)
‣ (6) Ensemble Kalman Filter (PO method)
‣ (7) Serial Ens. Square Root Filter (Serial EnSRF)
‣ (8) Local Ens. Transform Kalman Filter (LETKF)
‣ (9) Innovation Statistics
‣ (10) Adaptive Inflations
‣ (11) 4D Variational Method (4DVAR)



‣Lecture: Ensemble Kalman Filter
‣to introduce EnKF
‣to understand PO method

‣Training: Lorenz 96 
‣to implement PO method
‣to implement localization

Today’s Goal



Ensemble Kalman Filter
(EnKF)



Why EnKF?

n

n

Background error covariance cannot be 
stored on RAMfor high dimensional models 
such as NWP (n~O(1012~1015)

Ex) if n=106 1012 x 8 byte = 8 TB

Kalman Filter

Ensemble Kalman Filter
m

n

An approximation of error covariance
with ensemble perturbation matrix m: ensemble size



Conceptual Images

obs error cov: R obs error cov: R

Kalman Filter Ensemble Kalman Filter



Ensemble Forecasts
Analysis Ensemble

=

Ensemble Forecasts

=

Ensemble Mean

Ensemble Perturbation

=

=

for i = 1,…,m

δ represents ensemble perturbation

=



Approximation of Pb
Error Propagation in Ensemble Forecasts

Ensemble forecasts can be used for approximating
propagation of error covariance !



‣ Pls. study discussions on “unbiased variance”

why m-1?



Ensemble Kalman Filter

Error Covariance Approximation

Kalman Gain

Ensemble Perturbation in Observation Space

m x mp x p
※ usually R is diagonal (i.e., no obs error corr.)
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We can choose inverse computation
depending on p and m.

i.e. no H is needed



KF
Prediction (state)

Prediction of Error Cov. (explicitly)

Kalman Gain

Analysis (state)

Analysis Error Covariance

)
Ensemble Prediction (state)

for i = 1,…,m

Prediction of Error Covariance (implicitly)

Kalman Gain

EnKF

Analysis (state)

Analysis Error Covariance
(1) Stochastic: PO method
(2) Deterministic: Square Root Filter (SRF)

(e.g., serial EnSRF, EAKF, LETKF)



PO Method (stochastic)
Analysis of Ensemble

randomly drawn perturbation
 perturbed observation

Why do we need perturbation?

Analysis error covariance
should be (cf. 4th lecture)

if w/o perturbation (to take ave. from both sides)

Analysis error covariance
is underestimated 

if without perturbation! 
Burgers et al. (1998)



EnKF (PO) Algorithm

Prediction
(t-1  t)

Analysis

Background

Observations

next time step

ensemble

for i=1,…,m

Compute Kalman Gain

Update Analysis Ensemble
member loop for i=1,…,m (for updating ith member)
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Ensemble FCST

Analysis error 
covariance ௧ିଵ

௔

Forecast error 
covariance ௧

௕

Ensemble Kalman Filter

=
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Analysis error 
covariance ௧ିଵ
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Forecast error 
covariance ௧

௕

Observation error 
covariance R

Ensemble Kalman Filter



)

Analysis error 
covariance ௧ିଵ

௔

Ensemble 
update

Forecast error 
covariance ௧

௕

Observation error 
covariance R

Ensemble Kalman Filter



Analysis 
error 

covariance Forecast error 
covariance

Ensemble 
update

Forecast error 
covariance ௧

௕

Ensemble Kalman Filter

)



Basic Task 5



Basic Task 5



EnKF (PO) w/o Localization

m=10 m=100

m=500m=180

no inflation is used here



Treatments

(2) Variance Inflation

for i=1,…,m

(1) Perturbed Observations

this error should be modified so that

(3) Localization

Random number should be different
for each member

Kekem and Leendert (2018)

- to limit impacts of obs far from analysis grid points
for erroneous error “co”variance due to sampling errors

- several localizations have been proposed
- K localization (in PO or serial EnKF
- R localization (in LETKF)
- B localization (usually complex for high-dim modes)

Assimilating surrounding local obs. 
to update centered grid x1 (★)

★

Specifically, generate random numbers 𝛆′௧
௢(௜)

 𝑓𝑜𝑟 𝑖 = 1, , , 𝑚

and compute their average 𝛆ത௧
௢ =

ଵ

௠
∑ 𝛆′௧

௢(௜)௠
௜ୀଵ .

Then, perturb with  𝛆௧
௢(௜)=𝛆′௧

௢(௜)
− 𝛆ത௧

௢ that satisfies ∑ 𝛆௧
௢(௜)

= 0௠
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Empirical treatment for
(1) reducing sampling noise
(2) increasing the rank

localization

◦: Schur product

covariance localization (EnKF)

Sampled error covariance
(ensemble approximation)

Error Cov. w/ Localization

Localization Function



Localization Function
ହ ସ ଷ ଶ

ହ ସ ଷ ଶ

ିଵ

: distance b/w grids
: localization length scale

Gaspari Cohn Function

Gaussian Function

Gaspari and Cohn (1999)

usually used in PO and serial EnSRF

usually used in LETKF

tuning parameter

tuning parameter
: distance b/w grids
: localization length scale



Localization Function
Localization Function

Localization Matrix (Gaussian Function)



Localization in PO method

: Localization Matrix
:       Shur product 

also known as Hadamard product
or, element-wise product

Kalman Gain



Impacts of Localization (PO)
Inflation : m=8, σ=1, δ=10%

Localization should be applied for all “co”variance



EnKF (PO) w/ Localization

ensemble m = 40
localization σ = 40
inflation α =0.05

ensemble m = 40
localization σ = 10
inflation α =0.05

ensemble m = 40
localization σ = 3
inflation α =0.05

ensemble m = 40
localization σ = 1
inflation α =0.05



Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/

Thank you for your attention!


