Data Assimilation - A09. Innovation Statistics -

Shunji Kotsuki

Environmental Prediction Science Laboratory
Center for Environmental Remote Sensing (CEReS), Chiba University

(shunji.kotsuki@chiba-u.jp)

- (1) Introduction and NWP
- (2) Deterministic Chaos and Lorenz-96 model
- (3) A toy model and Bayesian estimation
- (4) Kalman Filter (KF)
- (5) 3D Variational Method (3DVAR)
- (6) Ensemble Kalman Filter (PO method)
- (7) Serial Ens. Square Root Filter (Serial EnSRF)
- (8) Local Ens. Transform Kalman Filter (LETKF)
- (9) Innovation Statistics
- (10) Adaptive Inflations
- (11) 4D Variational Method (4DVAR)

Today's Goal

- Lecture: innovation statistics
- to introduce innovation statistics
- to understand adaptive inflation
- Training: Lorenz 96
- to implement adaptive inflation into L96

Innovation statistics

$$
\begin{aligned}
& \mathbf{d}^{o-b}=\mathbf{y}^{o}-\mathbf{H} \mathbf{x}^{b} \\
& \mathbf{d}^{o-a}=\mathbf{y}^{o}-\mathbf{H} \mathbf{x}^{a}
\end{aligned}
$$

a: analysis

$$
\mathbf{d}^{a-b}=\mathbf{H x}^{a}-\mathbf{H} \mathbf{x}^{b}
$$

o: observation

Desroziers' innovation statistics (Desroziers et al. 2005)

$$
\begin{array}{ll}
\left\langle\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle=\mathbf{H B H}^{T}+\mathbf{R} & \left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle \approx \mathbf{H B H}^{T} \\
\left\langle\mathbf{d}^{o-a}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle \approx \mathbf{R} & \left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-a}\right)^{T}\right\rangle \approx \mathbf{H A H}^{T}
\end{array}
$$

Innovation Statistics (Derivations)

Innovation Statistics

Definition
$\langle\bullet\rangle$: Statistical Expectations

$$
\begin{array}{ll}
\boldsymbol{\varepsilon}^{o}=\mathbf{y}^{o}-\mathbf{y}^{t}, & \boldsymbol{\varepsilon}^{b}=\mathbf{x}^{b}-\mathbf{x}^{t}, \quad \boldsymbol{\varepsilon}^{a}=\mathbf{x}^{a}-\mathbf{x}^{t} \\
\mathbf{R}=\left\langle\boldsymbol{\varepsilon}^{o}\left(\boldsymbol{\varepsilon}^{o}\right)^{T}\right\rangle, & \mathbf{B}=\mathbf{P}^{b}=\left\langle\boldsymbol{\varepsilon}^{b}\left(\boldsymbol{\varepsilon}^{b}\right)^{T}\right\rangle, \quad \mathbf{A}=\mathbf{P}^{a}=\left\langle\boldsymbol{\varepsilon}^{a}\left(\boldsymbol{\varepsilon}^{a}\right)^{T}\right\rangle
\end{array}
$$

Derivation from Kalman Gain $\widetilde{\mathbf{B}}, \widetilde{\mathbf{R}}, \widetilde{\mathbf{A}}, \widetilde{\mathbf{K}} \quad$ matrices used in DA $\mathbf{x}^{a}=\mathbf{x}^{b}+\widetilde{\mathbf{K}} \mathbf{d}^{o-b}, \quad \widetilde{\mathbf{A}}=[\mathbf{I}-\widetilde{\mathbf{K}} \mathbf{H}] \widetilde{\mathbf{B}}$ $\mathbf{K}=\widetilde{\mathbf{B}} \mathbf{H}^{T}\left[\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right]^{-1}=\widetilde{\mathbf{A}} \mathbf{H}^{T} \widetilde{\mathbf{R}}^{-1}$

$\left\langle\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle=\mathbf{H B H}^{T}+\mathbf{R}$
$\left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{0-b}\right)^{T}\right\rangle \approx \mathbf{H B H}^{T}$
$\left\langle\mathbf{d}^{o-a}\left(\mathbf{d}^{0-b}\right)^{T}\right\rangle \approx \mathbf{R}$
$\left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{0-a}\right)^{T}\right\rangle \approx \mathbf{H A H}^{T}$

Derivations

$$
\begin{array}{rlr}
\left\langle\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle & =\mathbf{H B} \mathbf{H}^{T}+\mathbf{R} & \mathbf{d}^{o-b}=\mathbf{y}^{o}-\mathbf{H} \mathbf{x}^{b}=\boldsymbol{\varepsilon}^{o}-\mathbf{H} \boldsymbol{\varepsilon}^{b} \\
\left\langle\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle & =\left\langle\left(\boldsymbol{\varepsilon}^{o}-\mathbf{H} \boldsymbol{\varepsilon}^{b}\right)\left(\boldsymbol{\varepsilon}^{o}-\mathbf{H} \boldsymbol{\varepsilon}^{b}\right)^{T}\right\rangle=\mathbf{R}+\mathbf{H B} \mathbf{H}^{T} \\
& & \\
\left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle \approx \mathbf{H B H} \mathbf{d}^{T-b}=\mathbf{H} \mathbf{x}^{a}-\mathbf{H} \mathbf{x}^{b}=\mathbf{H} \widetilde{\mathbf{K}} \mathbf{d}^{o-b} \\
\left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle & =\left\langle\mathbf{H} \widetilde{\mathbf{K}}\left(\mathbf{d}^{o-b}\right)\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle & =\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1}\left(\mathbf{H B} \mathbf{H}^{T}+\mathbf{R}\right) \\
& =\mathbf{H B} \mathbf{H}^{e} \approx \mathbf{H B} \mathbf{H}^{T}
\end{array}
$$

$$
\begin{aligned}
& \left\langle\mathbf{d}^{o-a}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle \approx \mathbf{R} \\
& \left\langle\mathbf{d}^{o-a}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle \\
& =\widetilde{\mathbf{R}}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1}\left\langle\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle \\
& =\widetilde{\mathbf{R}}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1}\left(\mathbf{H B} \mathbf{H}^{T}+\mathbf{R}\right) \\
& =\mathbf{R}^{e} \approx \mathbf{R}
\end{aligned}
$$

$\mathbf{R}^{e}+\mathbf{H B}^{e} \mathbf{H}^{T}=\widetilde{\mathbf{R}}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1}\left(\mathbf{H B H}^{T}+\mathbf{R}\right)+\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1}\left(\mathbf{H B H}^{T}+\mathbf{R}\right)=\mathbf{R}+\mathbf{H B H}^{T}$

Derivations (cont'd)

$$
\begin{aligned}
\left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-a}\right)^{T}\right\rangle & \approx \mathbf{H A} \mathbf{H}^{T} \quad \mathbf{d}^{o-a}=\widetilde{\mathbf{R}}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1} \mathbf{d}^{o-b} \\
\left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-a}\right)^{T}\right\rangle & =\left\langle\mathbf{H} \widetilde{\mathbf{K}} \mathbf{d}^{o-b}\left(\widetilde{\mathbf{R}}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1} \mathbf{d}^{o-b}\right)^{T}\right\rangle \\
& =\mathbf{H} \widetilde{\mathbf{K}}\left(\mathbf{H B} \mathbf{H}^{T}+\mathbf{R}\right)\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1} \widetilde{\mathbf{R}} \\
& =\mathbf{H} \widetilde{\mathbf{A}} \mathbf{H}^{T} \widetilde{\mathbf{R}}^{-1}\left(\mathbf{H B} \mathbf{H}^{T}+\mathbf{R}\right)^{-1}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1} \widetilde{\mathbf{R}} \\
& =\mathbf{H} \mathbf{A}^{e} \mathbf{H}^{T} \approx \mathbf{H} \mathbf{A H}^{T}
\end{aligned}
$$

Innovation Statistics

Innovation Statistics

$$
\begin{aligned}
& \left\langle\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle=\mathbf{H B} \mathbf{H}^{T}+\mathbf{R} \\
& \left\langle\mathbf{d}^{o-a}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle=\widetilde{\mathbf{R}}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1}\left(\mathbf{H B} \mathbf{H}^{T}+\mathbf{R}\right)=\mathbf{R}^{e} \\
& \left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-b}\right)^{T}\right\rangle=\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}+\widetilde{\mathbf{R}}\right)^{-1}\left(\mathbf{H B} \mathbf{H}^{T}+\mathbf{R}\right)=\mathbf{H} \mathbf{B}^{e} \mathbf{H}^{T} \\
& \left\langle\mathbf{d}^{a-b}\left(\mathbf{d}^{o-a}\right)^{T}\right\rangle=\mathbf{H B}^{e} \mathbf{H}^{T}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{T}\right)^{-1} \mathbf{H} \widetilde{\mathbf{A}} \mathbf{H}^{T}=\mathbf{H} \mathbf{A}^{e} \mathbf{H}^{T}
\end{aligned}
$$

Their Relationship

$$
\mathbf{R}^{e}+\mathbf{H} \mathbf{B}^{e} \mathbf{H}^{T}=\mathbf{R}+\mathbf{H} \mathbf{B} \mathbf{H}^{T}
$$

NOTE: We need to consider
DA uses imperfect B \& R in the real-world applications
$\mathbf{R}, \mathbf{B}, \mathbf{A} \quad$: Truth
$\widetilde{\mathbf{R}}, \widetilde{\mathbf{B}}, \widetilde{\mathbf{A}} \quad$: DA (maybe imperfect)
$\mathbf{R}^{e}, \mathbf{B}^{e}, \mathbf{A}^{e}$: Estimated
o, R: obs
b, B: background
a, A : analysis

Geometric Interpretations of Data Assimilation

For simplicity, following discussion assumes a scalar problem

Pythagorean theorem

$$
\frac{b^{2}}{\sqrt{o^{2}+b^{2}}} \frac{o^{2}}{\sqrt{o^{2}+b^{2}}}=\frac{o^{2} b^{2}}{o^{2}+b^{2}}
$$

Innovation Statistics

(1) $O M B-O M B$ Statistics $\mathbf{H B H}{ }^{T}+\mathbf{R}$

$$
\left\langle\underline{d^{o-b}} \underline{d^{o-b}}\right\rangle=\left(\sigma^{b}\right)^{2}+\left(\sigma^{o}\right)^{2}
$$

(2) AMB-OMB Statistics $\mathbf{H B H}{ }^{T}$

$$
\left\langle d^{a-b} d^{o-b}\right\rangle=\left(\sigma^{b}\right)^{2}
$$

(3) OMA-OMB Statistics \mathbf{R}

$$
\left\langle\underline{d^{o-a}} \underline{d^{o-b}}\right\rangle=\left(\sigma^{o}\right)^{2}
$$

(4) AMB-OMA Statistics HAH ${ }^{T}$

$$
\left\langle\underline{d^{a-b}} \underline{d}^{o-a}\right\rangle=\left(\sigma^{a}\right)^{2}
$$

cross terms correspond to right angle: $\left\langle\mathbf{H} \boldsymbol{\varepsilon}^{b}\left(\boldsymbol{\varepsilon}^{o}\right)^{T}\right\rangle=\left\langle\left(\boldsymbol{\varepsilon}^{o}\right)^{T} \mathbf{H} \boldsymbol{\varepsilon}^{b}\right\rangle=0$

Kalman Gain

(1) Kalman gain gives weights

$$
\frac{Q}{P}=\frac{1}{\sqrt{\left(\sigma^{b}\right)^{2}+\left(\sigma^{o}\right)^{2}}} \frac{\left(\sigma^{b}\right)^{2}}{\sqrt{\left(\sigma^{b}\right)^{2}+\left(\sigma^{o}\right)^{2}}}=\frac{\left(\sigma^{b}\right)^{2}}{\left(\sigma^{b}\right)^{2}+\left(\sigma^{o}\right)^{2}}
$$

$$
\text { i.e., } \mathbf{K}=\mathbf{B H}^{T}\left(\mathbf{R}+\mathbf{H B H}^{T}\right)^{-1}
$$

(2) Also, Kalman gain is

$$
\frac{Q}{P}=\frac{\left(\sigma^{b}\right)^{2}}{\left(\sigma^{b}\right)^{2}+\left(\sigma^{o}\right)^{2}}=\frac{\left(\sigma^{a}\right)^{2}}{\left(\sigma^{o}\right)^{2}} \text { i.e., } \mathbf{K}=\mathbf{A H}^{T} \mathbf{R}^{-1}
$$

Namely, Kalman gain is uncertainty of
posterior error cov. w.r.t. obs. error cov.

Analysis Error Covariance

(1) Analysis minimizes variance of estimation

Analysis State

y^{o}
(1) a standard update equation

$$
\mathbf{x}_{t}^{a}=\mathbf{x}_{t}^{b}+\mathbf{K}_{t} \mathbf{d}_{t}^{o-b}
$$

(2) Also, analysis is given by

$$
\begin{aligned}
\mathbf{x}_{t}^{a} & =\mathbf{A}\left[\mathbf{B}^{-1} \mathbf{x}_{t}^{b}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{y}_{t}^{o}\right] \\
\Leftrightarrow \mathbf{A}^{-1} \mathbf{x}_{t}^{a} & =\mathbf{B}^{-1} \mathbf{x}_{t}^{b}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{y}_{t}^{o}
\end{aligned}
$$

> Review $\vec{c}=\frac{\beta^{2} \vec{a}+\alpha^{2} \vec{b}}{\alpha^{2}+\beta^{2}} \Leftrightarrow \frac{\vec{c}}{\gamma^{2}}=\frac{\vec{a}}{\alpha^{2}}+\frac{\vec{b}}{\beta^{2}}$ $\vec{a} / \backslash \vec{b}$

Analysis State (cont'd)

Geometric Interpretations

Focusing on the weights gives:

$$
\mathbf{K}_{t}=\mathbf{B} \mathbf{H}^{T}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{T}\right)^{-1}
$$

$$
\begin{aligned}
\mathbf{A} & =\mathbf{B}-\mathbf{K H B} \\
\mathbf{x}_{t}^{a} & =\mathbf{x}_{t}^{b}+\mathbf{K}_{t} \mathbf{d}_{t}^{o-b}
\end{aligned}
$$

Focusing on the AN cov. gives:

$$
\begin{aligned}
& \mathbf{K}=\mathbf{A} \mathbf{H}^{T} \mathbf{R}^{-1} \\
& \mathbf{A}^{-1} \mathbf{x}_{t}^{a}=\mathbf{B}^{-1} \mathbf{x}_{t}^{b}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{y}_{t}^{o}
\end{aligned}
$$

To understand DA via two ways

(1) Kalman gain gives the optimal weight
$\mathbf{K}=\mathbf{B} \mathbf{H}^{T}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{T}\right)^{-1}$ From the view point of analysis states
(2) Kalman gain is the analysis error cov. normalized by \mathbf{R}

$$
\mathbf{K}=\mathbf{A} \mathbf{H}^{T} \mathbf{R}^{-1}
$$

To discuss information (or entropy), (2) is more important

For example, DFS (Degrees of Freedom for the Signal) is given by:

$$
\begin{aligned}
D F S & =\frac{\partial \mathbf{y}^{a}}{\partial \mathbf{y}^{o}}=\frac{\partial}{\partial \mathbf{y}^{o}}\left(\mathbf{H} \mathbf{x}^{a}\right)=\frac{\partial}{\partial \mathbf{y}^{o}}\left(\mathbf{H} \mathbf{x}^{b}+\mathbf{H K}\left(\mathbf{y}^{o}-\mathbf{H} \mathbf{x}^{b}\right)\right)=\mathbf{H K} \\
& =\mathbf{H K}=\mathbf{H} \mathbf{H}^{T} \mathbf{R}^{-1} \quad \text { i.e., DFS is obs-space A normalized by } \mathbf{R}
\end{aligned}
$$

$D F S=0$: no information from obs, $D F S=1$: all information from obs

Thankyou for your attention!

Presented by Shunji Kotsuki

 (shunji.kotsuki@chiba-u.jp)Further information is available at
https://kotsuki-lab.com/

