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Goal

~ To understand computational complexity (CC)

» To understand CC of the LETKF
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Hunt et al. (2007) This Slide

Ensemble size k m

# of model grid points mpg1 n
# of observations Lig1 p

# of local observations [ 13

NOTE: The notation of this slide is different from Hunt et al. (2007)
so as to be consistent with other slides on data assimilation
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Step A | to compute H(xt( )) by applying H to members xb(k) =
4")
Step B | to compute Y? = H(Xb) — H(X?)-1 <
)
Step C | to compute §X? =X? —xP2 .1 3
I loop for analysis grid points (I=1, n) ‘:
Step D | to search local observations
Step E | to compute (Y?)TR;?! «
Step F | to compute (Y{?)TRl‘lY,f? ?
4V
to compute P¢ and W by the EVD T
Step G =[(m - DI+ ()lzf)TRl 1y?] ™" = ATAT ksl
= [m - 1)Pg]"" = = (m — DA™ /27T
oo H to compute the transform matrix T
e
P (Y)Rz (Yt H (x7 )) 1+W

. v E
Step | | to update ensemble X¢ =x?-1 + 6X°T S
o
" g =
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b(k)

Step A | to compute H(xt(k)) by applying H to members x;

m applications of H

Step B | to compute Y? ~ H(X?)—H(X?)-1 2mp
mp-times computations for H(X?) and Y2, respectively
Step C | to compute 6X? =X? —xP2 .1 2mn
mn-times computations for x?and 6X?, respectively
Hunt et al. (2007) Step A Step B Step C
b(i ; :
1. Apply Hig) to each x[ ] to form the global background 2. Average the vectors {\‘I(']'} to get the mh]-dunens'mrml
b(i
Obser‘vanon ()”S(J’”b[(z [y[g] }‘ and average fh(; [at“)r vectors vecltor \; ]? and subtract this vector ﬁ()’" each \[ ] 10
0 get the Uig)-dimensional column vector §7,,. Subtract this form the columns of the myg) x k matrix X[, (Again the
. - . b(i
vector from each {Vf’(')} to form the columns of the €[4 x k subtraction can be done “in place™; the \LClOI"s X : )} are

no longer needed.) This step requires a total of 7I\m|2
operations. (If A is linear, one can equivalently perform Step

the vectors {y [; '} are no longer needed.) This requires k 2 bch['L Step 1, and obtain \ , and \” | by applying H to
applications of H, plus 2k{j, (floating-point) operations. ' and \b )
el

matrix Yb 2]’ (This subtraction can be done “in place”, since

If H is an interpolation operator that requires only a few
model variables to compute each observation variable, then
the total number of operations for this step is proportional to
kl[g) times the average number of model variables required
to compute each scalar observation.
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Local Analysis (1)

Step D | to search local observations

3. This step selects the necessary data for a given grid point
(whether it is better to form the local arrays described below
explicitly or select them later as needed from the global
arrays depends on one’s implementation). Select the rows
of il[’g] and Xf’gl corresponding to the given grid point,
forming their local counterparts: the m-dimensional vector
X and the m x k matrix X®, which will be used in Step 8.
Likewise, select the rows of if[b p and Yf’gl corresponding to
the observations chosen for r/f(’ analysis at the given grid
point, forming the €-dimensional vector ¥° and the € x k
matrix YP. Select the corresponding rows of y‘[’gl and rows
and columns of Ryg| to form the €-dimensional vector y° and
the € x ¢ matrix R. (For a high-resolution model, it may be
reasonable to use the same set of observations for multiple
grid points, in which case one should select here the rows of
Xf’g] and if’gl corresponding to all of these grid points.)
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Local Analysis (2) =
Step E | to compute (Y?)TR;?! mpy,
Step F | to compute (Y?)TR;1Y? < 2m?p,

4. Compute the k x € matrix C = (Y?)TR™!. If desired, one 5. Compute the k x k matrix P = [(k — DI/p + CYb]_].

can multiply entries of R™" or C corresponding to a given as in (21). Here p > 1 is a multiplicative covariance infla-
observation by a factor less than one to decrease (or greater tion factor, as described at the end of the previous section.
than one to increase) its influence on the analysis. (For Though trying some of the other approaches described there

example, one can use a multiplier that depends on distance
from the analysis grid point to discount observations near
the edge of the local region from which they are selected;
this will smooth the spatial influence of observations, as

may be fruitful, a reasonable general approach is to start with
p > | and increase 1t gradually until one finds a value that is
optimal according to some measure of analysis quality. Mul-
tiplying C and Y? requires less than 2k>¢ operations, while

de\}“bEd, in Sedfon ) Smce‘t‘hl,s i o the number of operations needed to invert the & x kK matrix
which R is used, it may be most efficient to compute C by T — 3
1s proportional to k~.

solving the linear system RCT = Y? rather than inverting ~
R. In some applications, R may be diagonal, but in others R
will be block diagonal with each block representing a group
of correlated observations. As long as the size of each block
1s relatively small, inverting R or solving the linear system
above will not be computationally expensive. Furthermore,
many or all of the blocks that make up R may be unchanged
from one analysis time to the next, so that their inverses need
not be recomputed each time. Based on these considerations,
the number of operations required (at each grid point) for
this step in a typical application should be proportional to k¢, Step E
multiplied by a factor related to the typical block size of R. S‘tep F
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Step G Pt = [(m - DI+ (YE)TRz_lYf] = ATAT

to compute P and W by the EVD 0(m?)

= [(m = DP]"? = m — DAT2AT  0(m?)
— to compute the transform matrix T
e
P T = Pta(Yg’) R’ (Yt H(X?)) 1+W < 3m(m+p;)

W of Step G Step H

6. Compute the k x k matrix W = [(k — l)f’a]'/ 2 asin (24).
Again the number of operations required 1s proportional to
k>; it may be most efficient to compute the eigenvalues and
eigenvectors of [(k — 1)I/p 4+ CY”] in the previous step and
then use them to compute both P“ and W@

7. Compute the k-dimensional vector w* = f’aC(yo —§°). as

in (20), and add it to each column of W, forming a k x k
matrix whose columns are the analysis vectors {w@"}. Com-

puting the formula for w* from right-to-left, the total number

of operations required for this step is less than 3k (€ + k).




Analysis Update

Prediction
cience
Laboratory

Step | | to update ensemble X¢ =x?-1 + 6X°T

Step |

8. Multiply X? by each w*®) and add X° to get the analysis en-
semble members {x*} at the analysis grid point, as in (25).
This requires 2k?m operations.
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m dunt etal, 2007) | Kotsukl etal. 2022

to compute H(x, (k)) m applications of H m applications of H
B to compute Y? 2mp 2mp
C to compute §X? 2mn 2mn
D to search local obs problem dependent problem dependent
E to compute (Y?)"R;? mp; mp;
F to compute (Y/)"R;1Y/ < 2m?p, < 2m®p;
G to compute P2 and W 0(m3) 0(m?3)
H to compute the trans. mtx. T < 3m(m+p,) 0(m(m + pp)) (*1)
| to update ensemble X¢ 2m*n < 2m?n (*2)

*1: to be updated
*2: based on the Strassen algorithm
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