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DA Lectures A (Basic Course)

> (1) Introduction and NWP

> (2) Deterministic Chaos and Lorenz-96 model
> (3) A toy model and Bayesian estimation

> (4) Kalman Filter (KF)

>~ (5) 3D Variational Method (3DVAR)

> (6) Ensemble Kalman Filter (PO method)

> (7) Serial Ens. Square Root Filter (Serial EnSRF)
> (8) Local Ens. Transform Kalman Filter (LETKF)
> (9) Innovation Statistics

> (10) Adaptive Inflations

> (11) 4D Variational Method (4DVAR)



Today’s Goal

> Lecture
~ To understand the chaotic nature of atmosphere

> Training Course
> To implement Lorenz 96 (any language)
> To estimate error doubling time



Deterministic Chaos
(Lecture)




Deterministic Chaos and Predictability
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Chaotic systems have
limits to predictability
even with the perfect model!!

Initial Conditions :: x=y=z=15.000, 15.001, 15.002, ..., 15.009




Predictability differs
less predictable

Lorenz 63 System Attractor

more predictable

Lorenz 63 System Attractor
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Predictability depends on the initial state!



Ensemble Prediction (e.g. TC)
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JAXA's NWP: NEXRA
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Ensemble NWP by NEXRA
NEXRA Ensemble FCSTs (Temperature@ 500hPa)
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Ensemble NWP by NEXRA
NEXRA Ensemble FCSTS (Temperotur‘e@ SOOhPo)
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Ensemble NWP by NEXRA
NEXR& _Egigﬂble FCST (Terrfi
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Ensemble NWP by NEXRA
NEXRA Ensemble FCSTS (Temperoture@ SOOhPo)
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Ensemble NWP by NEXRA
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Ensemble NWP by NEXRA
I\JEXRA Ensemble FCSTS (Temperoture@ SOOhPo)
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Ensemble NWP by NEXRA
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1-day forecasts 7-day forecasts
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- smaller ensemble spread - larger ensemble spread
- ensemble predictions = reference + ensemble predictions # reference

- larger spread near extratropical cyclones
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DA Study w/ 40-variable Lorenz-96

Lorenz-96 model (Lorenz 1996) Forj 1..N Xj:ij
dX; /dt = (Xjy1 —Xi—2)Xj-1 — X; + F
Advection term Dissipation term Forcing term

NERETN « T — 2 FHCEREEAT OFE = — X

Training Course of Dynamical Model and Data Assimilation

January 31, 2020, Shunji Kotsuki
updated 2020/03/19, 2020/06/29, 2021/07/15

By : @5 N¥EE7 1 Lorenz @ 40 =74 (LUF L96; Lorenz 1996) # {#i - THEED
F—AREFEEALCEEL, ke aEBETI. T—FALr A7 A EFERIC, 0062
—FAVITEILT, NFEETV v 77— 2F{biclid 2 EBAL TEx 5 ) BRI
2ERT 5,

Purpose: Using the 40-variable dynamical a.k.a. Lorenz-96 (L96; Lorenz 1996), we are
going to perform various experiments with multiple data assimilation (DA) methods. By
actually coding a data assimilation system from scratch, you will acquire practically "usable”

basic techniques related to mechanical modeling and data assimilation.
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7 Purpose: Using the 40-variable dynamical a.k.a. Lorenz-96 (L96; Lorenz 1996), we are
// going to perform various experiments with multiple data assimilation (DA) methods. By
== A=y -
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// basic techniques related to mechanical modeling and data assimilation.
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- Method: Implement and solve the following problems yourself. Any programing languages or

platforms can be used in this exercise. At the Kotsuki Lab. mtg, each personnel will report the
Training Course progress, and try to solve the problems. Questions are accepted during the MTG as well as at
the office when necessary. As for the programing language, python, which is easy to perform

Data Assimilation matrix operations, is recommended unless specific language is preferred. Also, vou should

Training Course

code in double precision instead of single precision. Otherwise, confirming whether

T perfarming properly or not compared to the previous studies will not be possible.

Kotsuki Laboratory, CERaS, Chiba Univaraity

https://kotsuki-lab.com,

- https://kotsuki-lab.com/internal-pages/
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Training Course Problem (1)

R -

1. L96 # 4 K@ Runge-Kutta 5% TERTZ, ~F7A— X2l F 24 %2, F=8
OFflcAAREEZ L 2RSS, 22T, Runge-Kutta 1254 75 1 2H w3
HOTa— 74y Ta8, $h. A4 7-E0 . ooz ¥ —L L IRl TAH 2,
B b)) £, EFiE XL Lorenz and Emanuel (1998) @ Fig. 1 #B# 4 2,

Basic Tasks :

1. Implement L96 using the 4th-order Runge-Kutta method. Change the parameter value
Fin various ways and confirm that it becomes chaos when F = 8. Here, Runge-Kutta
needs to be coded yourself without using any libraries. Also, compare it with other
integration schemes such as the Euler method.

Hint) First, reproduce Fig. 1 of the original paper Lorenz and Emanuel (1998).
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The Lorenz-96 model (L96)

1 Fepruary 1998 LORENZ AND EMANUEL 399

Journal of the Atmospheric Sciences, 55

Optimal Sites for Supplementary Weather Observations: Simulation with a
Small Model

Epward N. LORENZ AND KERRY A, EMANUEL
Depariment of Barth, Atmospheric, and Planetary Sciences, Massachusetts histituie of Techmology, Cambridge, Massachuseits

(Manuscript received 12 December 1996, in final form 22 June 1997)

ABSTRACT

Anticipating the opportunity to make supplementary obssrvations at locations that can depend upon the current
weather situation, the question is posed as to what strategy shonld be adopted to select the locations, if the
grealest oprovement i analyses and forecasts 15 to be realized. To seek a preliminary aoswer, the authors
introduce a model consisting of 40 ordinary differential equations, with the dependent variables representing
values of some atmospheric goantity at 40 sites spaced equally about g latitude circle. The equations contain
quadratic. linear. and constant terms representing advection. dissipation, and external forcing. Numerical inte-
gration indicates thal small errors {(differences belween solutionsy tend o double n about 2 days. Localized
errors tend to spread eastward as thev grow, encircling the globe atter about 14 days.

In the experiments presented, 20 consecufive sites lig aver the ocean and 20 over land. A particular solution
is chosen as the e weather. Every 6 b observations are made, consisting of the true weather plus small random
ervars, a4t every land site, and al one ocean site o be selected by the strategy being considersd. An analvsis is
then made, consisting of ohservations where observations are made and previousty made 6-h forecasts elsewhere.
Forecasts are made for each site af ranges from 6 h o 10 days. In all forecasts, a slightly weakened external
forcing is used to simulate the model ervor. This process continues for 5 vears, and mean-square forecast errors
at each site af each range are accumulated.

Strategies that attempt to locate the site where the current analysis, as made without & supplementary obser-
vation, is most greatly in error are found to perform better than those that seek the oceanic site to which a
chosen land site is most sensitive af a chosen range. Among the former are strategies based on the “breeding™
methad, a variant of singular vectors, sud eosernbles of “replicated” observations; the last of these outperforms
the others. The authors speculate as to the applicability of these findings to models with more realistic dynamics
of without extensive regions devoid of routine observations, and to the real world,



The Lorenz-96 model (L96)

400 JOURNAL OF THE ATMOSPHERIC SCIENCES

and at short or extended range. A search for an answer
has constituted a part of the recent Fronts and Atlantic
Storm-Tracks HExperiment (FASTHEX) (e.g., Snyder
1996; Joly et al. 1997},

Various strategies for locating the new observations
suggest themselves. Some seeh the regions where the
analyses, as performed without the new observations,
will be most greatly in error. Gthers try to target the
locations where the present weather conditions will most
strongly influence the subsequent weather. Each strategy
possesses many possible variants. To test a large number
of them adequately in the field within a reasonable pe-
ricd, once the platforms are available, seems to be out
of the question. In these days when mathematical mod-
els of the weather are nife, 1t is virtually an axiom that
ane or more of them should be used for our first tests,
This can be done even before any platforms are ready;
nevertheless, we should anticipate that, whatever strat-
egy we may decide upon, the need for modifications, at
least of the details, will become apparent as soon as thc
new observations become a reality.

Because of the large number of specific procedures
that maight be tested, and the considerable number of
simulated weather situations to which each must be ap-
plied before a definitive choice among them can be
made, a full-scale expertment using a reasonably so-
phisticated model, such as the operational model of a

YorumEe 53

We have chosen a model with J variables, denoted by

X s A mmost of our expeniments we have let J

L=

= 40 The Qm erning equations are

dXjdt = (X, —X. )X, —X. +F (1)

J ]o make Eq. (1) meanimgful for all
= X), Xy = X‘ cmd_‘f,ﬁ

be looked at as v leues oj: 30 e unspemiled sha.hr me-
teorological quantity, perhaps vorticity or temperature,
at J equally spaced sites extending around a latitude
circle. Nothing will simulate the atmosphere’s latitu-
dmal or vertical extent.

We know of no way that the model can be produced
by truncating a more comprehensive set of metecrolog-

ical equations. We have merely formulated it as one of

the siaplest possible systems that treats all varables
alike and shares certam properties with many atmo-
spheric models, namely,

1} the nonlinear termns, intended to simulate advection,
are quadratic and together conserve the total energy,
defined as (X% + -+ + X2V2,

2) the linear terms, representing mechanical or thermal
dissipation, decrease the total energy;

3} the constant terms, representing external forcing,
prevent the total energy from decaving to zero.
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Time Integration Schemes

y' = f(ty)
Euler method (EUL)
y(t+1) =y@®) +f(ty)h o

from wikipedia

Yo+ hk3

Runge-Kutta 29 order (RK2)

S
~eaeitm ©
§ TS
283

y(t+1) =y@) + (ky + ko )h/2 ki = f(ty) =
ky=f(t+hy+ hky)

Runge-Kutta 4t order (RK4)

ki=f(ty) ks = f(t+h/2,y + hk,/2)
k,=f(t+h/2,y+hki/2) k,=f(t+hy+hks)




DA Study w/ 40-variable Lorenz-96

Lorenz-96 model (Lorenz 1996) Forj 1...N. X=X
EAYEY]

dX; /dt = (Xj41 —Xi—2)Xj-1 — X; + F

Advection term Dissipation term Forcing term

Initial Condition



DA Study w/ 40-variable Lorenz-96

Lorenz-96 model (Lorenz 1996) Forj 1..N )(j:)(j_+N
dX; /dt = (Xj41 —Xi—2)Xj-1 — X; + F
Advection term Dissipation term Forcing term

Lorenz et al. assumed 1 time unit = 5 days based on error doubling time.

Properties of system deduced without solving the equations.
1. When F > 0.895, steady solutions is unstable.

Properties of system deduced with solving the equations.
( N:40, dt : 0.05, with 4t order Runge-Kutta scheme)
1. When F < 4.0, the perturbations ultimately develop
into perfect wave number eight.
2. When F > 4.0, the a spatially irregular pattern
with chaotic time variations appears.



DA Study w/ 40-variable Lorenz-96
Lorenz-96 model (Lorenz 1996) Forj 1..N X=X
dX; /dt = (Xjp1— Xj_2)X;1— X; + F

Advection term Dissipation term Forcing term

Lorenz et al. assumed 1 time unit = 5 days based on error doubling time.

Lorenz Model (F8.000, dt=0.050)
0 e e e e o f
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slte FIG. 1. Longitudinal profiles of X, at 6-h intervals. as determined by Eq. (1) with N = 40

and F = 8.0, when initially X,, = F + 0.008 and X, = Fwhen j # 20. On horizontal portion
of each curve, X, = F. Interval between successive short marks at left and right is 0.01 units.
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Stable or Chaotic?
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|f‘> Advection term conserve the total energy defined as Z(Xf.)/2
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Time Integration Schemes

F=0.8, day=15.0 F=2, day=15.0 F=4, day=15.0 F=8, day=15.0
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Training Course Problem (2)

2. #FA—FZMF=8 75, RECOFHREFCOVTH~, 02HEIATv 7% 1 H
LIEFT A LR 5.
k 2 k) Lorenz (1996) @ error doubling time" Q&% 7 + 0 —F 5 L Ay, 7—#[A

b= I =74 TIEMEEILMET. root mean square error (RMSE) CTiEli+ 20T, L&
RMSE <ifh 325 2 &,

2. The parameter F is set to be 8. Investigate the average of error generating ratio and
validate the definition of a 0.2-hour step as one day.
Hint) Follow Lorenz's (1996) discussion of "error doubling time". In the data assimilation

community, the error is usually evaluated by root mean square error (RMSE), so it should
be evaluated by RMSE hereafter.




To Calc. Error Doubling Time

1. Mersenne Twistter method
: To generate pseudo-random number sampling

2. Box-Muller transformation
: To generate pairs of normally distributed random numbers

3. Error propagation analysis (average RMSE)

0 Control run (CTL)

Three year spin up

O«
-0
20
20
20)

1000
simulations

v

o
v

v

X' =X, (0)+std-NO,1)| &

For std = 0.0010, 0.0100, -
0.1000

When std=1.000, some superposed run has diverged v




To Generate N(0,1) Numbers

1. Mersenne Twistter method
: To generate pseudo-random number sampling

2. Box-Muller transformation
: To generate pairs of normally distributed random numbers

Box-Muller Method (n=10*10%, dx=0.01)

" histogram ———1

Box-Muller’'s method: 04| theory
When X and Y obey uniform distribution (0,1),
Z, and Z,, defined by following equations,

obey normal distribution N(0O,1).

PDF

Z, = \/—2 log X cos2rzY
Z, = \/—2 log X sin2zY




Error Propagation Analysis

RMSE

log,o(RMSE)

RMSE

'
o

' '
o o

' '
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Error Expansion (RMSE, STD0.0010)
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Error Propagation Analysis

log10(RMSE)

Average prediction error
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Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/
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