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Goal

> To understand computational complexity (CC)

» To understand CC of the LETKF
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Note: Different notations

Hunt et al. (2007) This Slide

Ensemble size k m

# of model grid points mg n
# of observations lg1 p

# of local observations [ pL

NOTE: The notation of this slide is different from Hunt et al. (2007)
so as to be consistent with other slides on data assimilation



Miyoshi’s implementation

Step A | to compute H(xt( )) by applying H to members xb(k) 5
q0)
Step B | to compute Y? ~ H(Xb) — H(X?)-1 £
CD
Step C | to compute §X? =X2 —xP .1 5
I loop for analysis grid points (I=1,n) Y
Step D | to search local observations
Step E | to compute (Y?)TR;? «
Step F | to compute (Y{’)TRl‘lYf —E
(4V)
to compute P% and W by the EVD T
Step G =|(m - DI+ (Yf)TRl 1Yf?] = ATAT O
= [(m — 1)P? ] = (m — 1AL Y/2AT
Cron H to compute the transform matrix T
tep Pe(v)) Ry (y¢ —H(xP)) 1+ W
l \ 4 _8
Step | | to update ensemble X% =x?.1 + 6X2T S
o
" 4 =



Overhead

m applications of H

2mp

2mn

Step A | to compute H(xf(k)) by applying H to members xf(k)
Step B | to compute Y? ~ H(X?) — H(X?)-1

mp-times computations for H(X?) and YZ, respectively
Step C | to compute 6X? =XxP —xP .1

mn-times computations for x?and 6X2, respectively
Hunt et al. (2007) Step A Step B Step C

pr

B(i) . .
2. Average the vectors -{).m } to get the mjyg-dimensional

1. Apply Hig) to each x'ﬁg;) to form the global background
observation ensemble {y?é;)}. and average the latter vectors
to get the Lig)-dimensional column vector i’?g]. Subtract this
vector from each {yfg(,;)} to form the columns of the l[g) X k
matrix Yf’g]. (This subtraction can be done “in place”, since

the vectors {yf(;)} are no longer needed.) This requires k
applications ong, plus 2k¥;,1 (floating-point) operations.

If H 1s an interpolation operator that requires only a few
model variables to compute each observation variable, then
the total number of operations for this step i1s proportional to
k{|g) times the average number of model variables required
to compute each scalar observation.

— b . . bii)
vector \1 o]’ and subtract this vector from each X Yo

“lgl
form the columns of the mg) x k mairix Kﬂ;r (Again the

subtraction can be done “in place™; the vectors {x;’;]’} are

no longer needed.) This step requires a total of 2kmy,,

operations. (If / is linear, one can equivalently perform Step
2 before Step 1, and obtain ]T-'f*ql and Y? | by applying H to

[5]
=h by
X[ and hm.}
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Local Analysis (1)

Step D | to search local observations

3. This step selects the necessary data for a given grid point
(whether it is better to form the local arrays described below
explicitly or select them later as needed from the global
arrays depends on one’s implementation). Select the rows

of R‘E’g] and X%’g] corresponding to the given grid point,

forming their local counterparts: the m-dimensional vector

X2 and the m x k matrix Xb, which will be used in Step 8.

Likewise, select the rows of yf’g] and Y‘E’g] corresponding to

the observations chosen for the analysis at the given grid

point, forming the (-dimensional vector ¥° and the £ x k

matrix YP. Select the corresponding rows of y‘[’ | and rows

and columns of Ryg) to form the €-dimensional vector y° and
the ¢ x ¢ matrix R. (For a high-resolution model, it may be
reasonable to use the same set of observations for multiple
grid points, in which case one should select here the rows of

X‘E’g] and i‘?g] corresponding to all of these grid points.)



Local Analysis (2)

Step E | to compute (Y?)TR;?

mpy,

Step F | to compute (Y?)TR;1Y?

< 2m?p,

4. Compute the k x £ matrix C = (Yb)TR_]. If desired, one
can multiply entries of R™! or C corresponding to a given
observation by a factor less than one to decrease (or greater
than one to increase) its influence on the analysis. (For
example, one can use a multiplier that depends on distance
from the analysis grid point to discount observations near
the edge of the local region from which they are selected:
this will smooth the spatial influence of observations, as
described in| Section 2.3.4.) Since this is the only step in
which R 1s used, it may be most efficient to compute C by
solving the linear system RCT = Y? rather than inverting
R. In some applications, R may be diagonal, but in others R
will be block diagonal with each block representing a group
of correlated observations. As long as the size of each block
is relatively small, inverting R or solving the linear system
above will not be computationally expensive. Furthermore,
many or all of the blocks that make up R may be unchanged
from one analysis time to the next, so that their inverses need
not be recomputed each time. Based on these considerations.
the number of operations required (at each grid point) for
this step in a typical application should be proportional to k¢,
multiplied by a factor related to the typical block size of R.

5. Compute the k x k matrix P’ = [(k — DI/p + CYb]_]‘_

as in (21). Here p = 1 is a multiplicative covariance infla-
tion factor, as described at the end of the previous section.
Though trying some of the other approaches described there
may be fruitful, a reasonable general approach is to start with
p > 1 and increase it gradually until one finds a value that is
optimal according to some measure of analysis quality. Mul-
tiplying C and Y? requires less than 2k¢ operations, while
the number of operations needed to invert the kK x k matrix
is proportional to k2.

Step E
Step F
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Local Analysis (2)

Step H

to compute P# and W by the EVD 0(m?)
Step G Pt = [(m - DI+ (Yé’)TRl‘lY{?] — ATAT
= [m — 1DPE]"? = m — DAT-V2AT  0(m?)
to compute the transform matrix T
T=PA(Y2) Ry (y2 —H(xP)) - 1+W  <3m(m+p,)

W of Step G Step H

6. Compute the k x k matrix W = [(k — l)f’“]lﬁ. as in (24).
Again the number of operations required 1s proportional to
k>: it may be most efficient to compute the eigenvalues and
eigenvectors of [[k — DI/p + CYE’] in the previous step and

then use them to compute both P* and WO,

7. Compute the k-dimensional vector w® = f’aC{y“ — %), as
in (20). and add it to each column of W€, forming a k x k
matrix whose columns are the analysis vectors {w®?)}. Com-
puting the formula for w? from right-to-left, the total number
of operations required for this step is less than 3k(£ + k).




Analysis Update

Step | | to update ensemble X¢ =x? -1+ §X2T

2mn

Step |

8. Multiply G by each w*") and add X’ 10 get the analysis en-
semble members {x*V} at the analysis grid point, as in (25).
This requires 2k%m operations.




Summary

m funt et al. (2007) | Kotsuld st al. (2022

to compute H(xt(k)) m applications of H m applications of H
B to compute Y? 2mp 2mp
C to compute §X? 2mn 2mn
D to search local obs problem dependent problem dependent
E to compute (Y?)TR;? mp; mp;
F to compute (Y[)TRl‘lY[ < 2m?p, < 2m?p;
G to compute P¢ and W 0(m3) 0(m?)
H to compute the trans. mtx. T < 3m(m+p,) O(m(m +py)) (*1)
I to update ensemble X¢ 2m®n < 2m?n (*2)

*1: to be updated
*2: based on the Strassen algorithm



jihank§yollfogyoldattention!

Presented by Shunji Kotsuki
(shunji.kotsuki@chiba-u.jp)

Further information is available at
https://kotsuki-lab.com/
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