Data Assimilation - 001. FSO & EFSO -

Shunji Kotsuki

Center for Environmental Remote Sensing / Institute of Advanced Academic Research (shunji.kotsuki@chiba-u.jp)

Observation Diagnosis

Observation Space Analysis

- Innovation statistics
- Degrees of freedom to signals

Forecast Sensitivity

		Forecast Sensitivity to Observation (FSO)		
		Adjoint	Ensemble	
DA (iteration)	iterative	Langland and Baker (2004)	Buehner et al. (2018)	
	deterministic	N/A	Kalnay et al. (2012)	

		Forecast Sensitivity to R (FSR)		
		Adjoint	Ensemble	
DA (iteration)	Adjoint	Daescu (2008)	N/A	
	Ensemble	N/A	Hotta et al. (2017)	

Forecast Sensitivity to Observation (FSO)

The difference b/w $\mathbf{e}_{t|0}$ and $\mathbf{e}_{t|-6}$ depends only on the obs DA'ed at t=0.

FCST Error Reduction
$$J = \Delta e^2 = e_{t|0}^2 - e_{t|-6}^2 = \mathbf{e}_{t|0}^T C \mathbf{e}_{t|0} - \mathbf{e}_{t|-6}^T C \mathbf{e}_{t|-6}$$

 $\frac{\partial J}{\partial \mathbf{y}} \in \mathbb{R}^p$

Error Reduction w.r.t. Obs

C : square norms (e.g. L2 for L63/L96, dry/moist energy norm for NWP)

FCST Sensitivity to Obs (FSO)

$$J = \Delta e^{2} = \mathbf{e}_{t|0}^{T} C \mathbf{e}_{t|0} - \mathbf{e}_{t|0}^{T} C \mathbf{e}_{t|-6}$$

$$= (\mathbf{e}_{t|0} - \mathbf{e}_{t|-6})^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$$

$$= (\mathbf{\bar{x}}_{t|0}^{b} - \mathbf{\bar{x}}_{t|-6}^{b})^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$$

$$= (\mathbf{M}(\mathbf{\bar{x}}_{0}^{a} - \mathbf{\bar{x}}_{0|-6}^{b})]^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$$

$$= (\mathbf{M}\mathbf{K}\delta\mathbf{y}_{o})^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$$

$$= \delta\mathbf{y}_{o}^{T} \mathbf{K}^{T} \mathbf{M}^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$$

$$\delta\mathbf{y}_{o} \in \mathbb{R}^{p}$$

$$\mathbf{u} = \mathbf{K}^{T} \mathbf{M}^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6}) \in \mathbb{R}^{p}$$

$$\therefore \frac{\partial J}{\partial \mathbf{y}} \approx \mathbf{K}^{T} \mathbf{M}^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$$

$$J = \sum_{i=1}^{p} \delta y_{o,i} u_{i}$$
i.e., impact of *i*th obs is $\delta y_{o,i} u_{i}$

Ensemble FSO

$$J = \Delta e^{2} = \mathbf{e}_{t|0}^{T} C \mathbf{e}_{t|0} - \mathbf{e}_{t|0}^{T} C \mathbf{e}_{t|-6}$$

$$= (\mathbf{M}\mathbf{K}\delta\mathbf{y}_{o})^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$$

$$\approx \delta \mathbf{y}_{0}^{T} \mathbf{R}^{-1} \mathbf{Y}_{0}^{a} \mathbf{X}_{t|0}^{bT} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6}) / (m-1)$$

$$\delta \mathbf{y}_{o} \in \mathbb{R}^{p} \qquad \mathbf{u} = \mathbf{K}^{T} \mathbf{M}^{T} C (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6}) \in \mathbb{R}^{p}$$

$$J = \sum_{i=1}^{p} \delta y_{o,i} u_{i} \qquad \text{i.e., impact of } i\text{th obs is } \delta y_{o,i} u_{i}$$

$$M\mathbf{K}\delta\mathbf{y}_{0} = M\mathbf{A}\mathbf{H}^{T}\mathbf{R}^{-1}\delta\mathbf{y}_{0} \qquad \qquad \mathbf{A} = \frac{1}{m-1}\mathbf{X}_{0}^{a}(\mathbf{X}_{0}^{a})^{T}$$
$$\approx M\mathbf{X}_{0}^{a}(\mathbf{H}\mathbf{X}_{0}^{a})^{T}\mathbf{R}^{-1}\delta\mathbf{y}_{0}/(m-1)$$
$$= \mathbf{X}_{t\mid0}^{b}\mathbf{Y}_{0}^{a^{T}}\mathbf{R}^{-1}\delta\mathbf{y}_{0}/(m-1) \qquad \qquad \delta\mathbf{Y}_{0}^{a} \equiv \mathbf{H}\delta\mathbf{X}_{0}^{a}$$

i.e., impact of *i*th obs is $\delta y_{o,i}u_i$

Experiments w/ Lorenz96

Kotsuki, S., Greybush, S., and Miyoshi, T. (2017):

Can we optimize the assimilation order in the serial ensemble Kalman filter? A study with the Lorenz-96 model.

Mon. Wea. Rev., 145, 4977-4995. doi: 10.1175/MWR-D-17-0094.1

Environmental Prediction Science Laboratory

Experimental Setting

- Serial EnSRF (Whitaker and Hamill 2001)
 - Ensemble size : 8
 - # of observations : 40
 - Adaptive multiplicative inflation (Miyoshi 2011)
- Assimilation order
 - 1. Randomly-determined
 - 2. From better to worse obs based on EFSO

cf. Kotsuki et al. (2017, MWR)

Environmental Prediction Science Laboratory

Debug

$$\Delta e_{true}^2 = \mathbf{e}_{t|0}^T C \mathbf{e}_{t|0} - \mathbf{e}_{t|0}^T C \mathbf{e}_{t|-6}$$
$$\Delta e_{EFSO}^2 = \delta \mathbf{y}_0^T \mathbf{R}^{-1} \mathbf{Y}_0^a \mathbf{X}_{t|0}^{bT} C \big(\mathbf{e}_{t|0} + \mathbf{e}_{t|-6} \big) / (m-1)$$

A case w/ serial EnSRF

-: random order

-: EFSO better \rightarrow worse obs.

Ave of 1460 cases

Replication by students

Experiments w/NICAM-LETKF

Kotsuki, S.*, Kurosawa, K., and Miyoshi, T. (2019): On the Properties of Ensemble Forecast Sensitivity to Observations. *Q. J. R. Meteorol. Soc.*, 145, 1897-1914. doi: 10.1002/qj.3534

Reference & Norms

$$\Delta e_{NOD}^2 = (\mathbf{d}_{t|0}^T \mathbf{R}_t^{-1} \mathbf{d}_{t|0} - \mathbf{d}_{t|-6}^T \mathbf{R}_t^{-1} \mathbf{d}_{t|-6})/p \qquad \mathbf{d}_t = \mathbf{y}_t^o - H(\mathbf{x}_t^b)$$

Ensemble FSO

Normalized Obs. Departure for Error Norm (Sommer and Weissmann 2016)

$$\Delta e_{NOD}^{2} = (\mathbf{d}_{t|0}^{T} \mathbf{R}_{t}^{-1} \mathbf{d}_{t|0} - \mathbf{d}_{t|-6}^{T} \mathbf{R}_{t}^{-1} \mathbf{d}_{t|-6})/p \qquad \mathbf{d}_{t} = \mathbf{y}_{t}^{o} - H(\mathbf{x}_{t}^{b})$$

$$\approx -\frac{1}{p} \frac{1}{m-1} \delta \mathbf{y}_{0}^{T} \mathbf{R}^{-1} \mathbf{Y}_{0}^{a} \mathbf{Y}_{t|0}^{bT} \mathbf{R}_{t}^{-1} (\mathbf{d}_{t|0} + \mathbf{d}_{t|-6})$$
obs-minus-FG AN ptb FCST ptb in obs space

Ensemble FSO (proof of NOD)

Normalized Obs. Departure for Error Norm (Sommer and Weissmann 2016)

$$\begin{split} \Delta e_{NOD}^{2} &= \left(\mathbf{d}_{t\mid0}^{T} \mathbf{R}_{t}^{-1} \mathbf{d}_{t\mid0} - \mathbf{d}_{t\mid-6}^{T} \mathbf{R}_{t}^{-1} \mathbf{d}_{t\mid-6}\right) / p \\ &= \left(\mathbf{d}_{t\mid0} - \mathbf{d}_{t\mid-6}\right)^{T} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t\mid0} + \mathbf{d}_{t\mid-6}\right) \\ &= \left(-H(\mathbf{x}_{t\mid0}^{b}) + H(\mathbf{x}_{t\mid-6}^{b})\right)^{T} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t\mid0} + \mathbf{d}_{t\mid-6}\right) \\ &\approx -\left[\mathbf{HM}(\bar{\mathbf{x}}_{0}^{a} - \bar{\mathbf{x}}_{0\mid-6}^{b})\right]^{T} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t\mid0} + \mathbf{d}_{t\mid-6}\right) \\ &= -(\mathbf{HMK}\delta\mathbf{y}_{o})^{T} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t\mid0} + \mathbf{d}_{t\mid-6}\right) \\ &= -\delta\mathbf{y}_{o}^{T} \mathbf{K}^{T} \mathbf{M}^{T} \mathbf{H}^{T} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t\mid0} + \mathbf{d}_{t\mid-6}\right) \\ &\approx -\frac{1}{p} \frac{1}{m-1} \delta \mathbf{y}_{0}^{T} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t\mid0} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t\mid0} + \mathbf{d}_{t\mid-6}\right) \right) \\ &\text{obs-minus-FG} \qquad \text{AN ptb } \text{FCST ptb} \\ &\text{in obs space} \end{split}$$

Estimated Impacts by EFSO

FCST MTE Error Reduction

vs. NICAM-LETKF

vs. ERA Interim

Monthly average in July 2014; FT 06hr

FCST NOD Error Reduction

Each type of observations mainly contributes to the improvement of the observed variable.

Monthly average in July 2014; FT 12hr

Detection of detrimental AMSU-A radiances

nvironmental

Prediction

We can evaluate impacts of AMSU-A by EFSO without expensive w/wo OSE experiments

On Beneficial & Detrimental Obs

FCST Error Reduction (2014071100UTC)

Ref.	Subseq. AN	ERA Interim	AMSU-A
FT 06hr	<u>58.8 %</u>	55.4 %	53.1 %
FT 12hr	<u>56.1 %</u>	54.2 %	53.2 %

FSO may overestimate observational impact with subsequent analyses for verification reference.
→ It is good to use an independent anl for reference

Impacts in Time (vs. ERA Interim)

Impacts in Space (vs. ERA Interim)

FT: 24hr SAMPLE: 2018060100-2018063018

A Case of Heavy Rain in July 2018

Kotsuki, S.*, Terasaki, K., Kanemaru, K., Satoh, M., Kubota, T. and Miyoshi, T. (2019): Predictability of Record-Breaking Rainfall in Japan in July 2018: *SOLA*, 15A, 1-7. doi: 10.2151/sola.15A-001

-24h-Precipitation [mm]

Obs Impacts

Large impacts than usual → rapid error growth
 Impacts on moist field is bigger

ME : Moist Energy
 PE : Potential Energy
 KE : Kinetic Energy

(水蒸気の改善) (気温・気圧の改善) (風向風速の改善)

Radiosondes' Impacts

ME : Moist Energy
PE : Potential Energy
KE : Kinetic Energy

(水蒸気の改善) (気温・気圧の改善) (風向風速の改善)

Thank you for your attention! Presented by Shunji Kotsuki (shunji.kotsuki@chiba-u.jp)

Further information is available at https://kotsuki-lab.com/

